相关习题
 0  237874  237882  237888  237892  237898  237900  237904  237910  237912  237918  237924  237928  237930  237934  237940  237942  237948  237952  237954  237958  237960  237964  237966  237968  237969  237970  237972  237973  237974  237976  237978  237982  237984  237988  237990  237994  238000  238002  238008  238012  238014  238018  238024  238030  238032  238038  238042  238044  238050  238054  238060  238068  266669 

科目: 来源: 题型:选择题

14.如图,△O'A'B'是水平放置的△OAB的直观图,则△OAB的周长为(  )
A.$10+2\sqrt{13}$B.3$\sqrt{2}$C.$10+4\sqrt{13}$D.12

查看答案和解析>>

科目: 来源: 题型:选择题

13.下列说法中不正确的是(  )
A.圆柱的侧面展开图是一个矩形
B.直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥
C.圆锥中过轴的截面是一个等腰三角形
D.圆台中平行于底面的截面是圆面

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知f(x)=lnx-ax,(a∈R),g(x)=-x2+2x+1.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若对任意的x1∈[1,e],总存在x2∈[0,3],使f(x1)=g(x2),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设抛物线C:y2=2px(p>0)过点$M(2,-2\sqrt{2})$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点F(1,0)作相互垂直的两条直线l1,l2,曲线C与l1交于点P1,P2,与l2交于点Q1,Q2.证明:$\frac{1}{{|{{P_1}{P_2}}|}}+\frac{1}{{|{{Q_1}{Q_2}}|}}=\frac{1}{4}$;
(Ⅲ)在(Ⅱ)中,我们得到关于抛物线的一个优美结论.请你写出关于椭圆$Γ:\frac{x^2}{4}+\frac{y^2}{3}=1$的一个相类似的结论(不需证明).

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=ex-kx,x∈R,k为常数,e是自然对数的底数.
(Ⅰ)当k=e时,证明f(x)≥0恒成立;
(Ⅱ)若k>0,且对于任意x≥0,f(x)>0恒成立,试确定实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,四边形ABEF为矩形,AC=BC,AB=2AF=FC=2,$OC=\sqrt{2}$.O为AB的中点.
(Ⅰ)求证:FA⊥平面ABC;
(Ⅱ)求二面角F-CE-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数$f(x)=alnx-\frac{2b}{x}$在x=1处有极值1.
(Ⅰ)求实数a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+5$.
(Ⅰ)求曲线y=f(x)在点(0,5)处的切线方程;
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且$\frac{AE}{AC}=\frac{AF}{AD}$=λ(0<λ<1).
(1)求二面角A-BE-F的大小;
(2)当λ为何值时,平面BEF⊥平面ACD?

查看答案和解析>>

科目: 来源: 题型:解答题

5.三角形的三个顶点是A(4,0),B(6,7),C(0,3).
(1)求AC边所在的直线方程;
(2)求AC边上的高所在的直线方程;
(3)求经过两边AB和BC中点的直线的方程.

查看答案和解析>>

同步练习册答案