相关习题
 0  237914  237922  237928  237932  237938  237940  237944  237950  237952  237958  237964  237968  237970  237974  237980  237982  237988  237992  237994  237998  238000  238004  238006  238008  238009  238010  238012  238013  238014  238016  238018  238022  238024  238028  238030  238034  238040  238042  238048  238052  238054  238058  238064  238070  238072  238078  238082  238084  238090  238094  238100  238108  266669 

科目: 来源: 题型:填空题

12.若α为锐角,sinα-mcosα=a(m>0),则msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若关于x的方程$\frac{1}{f(x)-4}$=a的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=lnx-2ax,a∈R.
(Ⅰ)若函数y=f(x)存在与直线2x-y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有极大值点x1,求证:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M (m,0)(m>$\frac{3}{4}$)作斜率不为0的直线l,交椭圆E于A,B两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:
甲公司送餐员送餐单数频数表
 送餐单数 38 39 40 41 42
 天数 20 40 20 10 10
乙公司送餐员送餐单数频数表
 送餐单数 38 39 40 41 42
 天数 10 20 20 40 10
(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答下列问题:
(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;
(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2-cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=$\frac{π}{3}$,△ABC的面积为4$\sqrt{3}$,求c.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知f(x)=x3-3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是0<m<4+4$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则k=8.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}$,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1•x2的取值范围是(  )
A.[4-2ln2,+∞)B.($\sqrt{e}$,+∞)C.(-∞,4-2ln2]D.(-∞,$\sqrt{e}$)

查看答案和解析>>

同步练习册答案