分析 (Ⅰ)分类讨论求得原不等式解集.
(Ⅱ)由分段函数f(x)的解析式可得f(x)的单调性,由此求得函数f(x)的值域,求出$\frac{1}{f(x)-4}$的取值范围.再根据关于x的方程$\frac{1}{f(x)-4}$=a的解集为空集,求得实数a的取值范围.
解答 解:(Ⅰ)解不等式|x-2|+|2x+1|>5,
x≥2时,x-2+2x+1>5,解得:x>2;
-$\frac{1}{2}$<x<2时,2-x+2x+1>5,无解,
x≤-$\frac{1}{2}$时,2-x-2x-1>5,解得:x<-$\frac{4}{3}$,
故不等式的解集是(-∞,-$\frac{4}{3}$)∪(2,+∞);
(Ⅱ)f(x)=|x-2|+|2x+1|=$\left\{\begin{array}{l}{3x+1,x≥2}\\{x+3,-\frac{1}{2}<x<2}\\{-3x+1,x≤-\frac{1}{2}}\end{array}\right.$,
故f(x)的最小值是$\frac{5}{2}$,所以函数f(x)的值域为[$\frac{5}{2}$,+∞),
从而f(x)-4的取值范围是[-$\frac{3}{2}$,+∞),
进而$\frac{1}{f(x)-4}$的取值范围是(-∞,-$\frac{2}{3}$]∪(0,+∞).
根据已知关于x的方程$\frac{1}{f(x)-4}$=a的解集为空集,所以实数a的取值范围是(-$\frac{2}{3}$,0].
点评 本题主要考查带有绝对值的函数,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 6$\sqrt{3}$ | C. | 12 | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-4y2=1 | B. | $\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{64}$=1 | C. | $\frac{{y}^{2}}{4}$-x2=1 | D. | y2-4x2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 满意度 评分分组 | 频数 |
| [50,60) | 2 |
| [60,70) | 8 |
| [70,80) | 14 |
| [80,90) | 14 |
| [90,100] | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com