相关习题
 0  237971  237979  237985  237989  237995  237997  238001  238007  238009  238015  238021  238025  238027  238031  238037  238039  238045  238049  238051  238055  238057  238061  238063  238065  238066  238067  238069  238070  238071  238073  238075  238079  238081  238085  238087  238091  238097  238099  238105  238109  238111  238115  238121  238127  238129  238135  238139  238141  238147  238151  238157  238165  266669 

科目: 来源: 题型:解答题

18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如表:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不要求计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,再从这20名用户中满足评分不低于80分的用户中任意抽取2名用户,求2名用户评分都小于90分的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

17.直线x-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长为(  )
A.$\sqrt{30}$B.$\frac{5\sqrt{3}}{2}$C.4$\sqrt{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=ax-lnx.
(1)过原点O作函数f(x)图象的切线,求切点的横坐标;
(2)对?x∈[1,+∞),不等式f(x)≥a(2x-x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知点P($\sqrt{3}$,1),Q(cosx,sinx),O为坐标原点,函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(1)求函数f(x)的最小值及此时x的值;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为$\frac{3\sqrt{3}}{4}$,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知定义在R上的函数f(x)为增函数,当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(  )
A.(-∞,0)B.$(0,\frac{1}{2})$C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

12.下列命题中错误的是(  )
A.如果平面α外的直线a不平行于平面α,平面α内不存在与a平行的直线
B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γ
C.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
D.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交

查看答案和解析>>

科目: 来源: 题型:选择题

11.直线4x-3y=0与圆(x-1)2+(y-3)2=10相交所得弦长为(  )
A.6B.3C.$6\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

10.F为双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左焦点,过点F且斜率为1的直线与两条渐近线分别交于A,B两点,若$\frac{|AF|}{|BF|}$=$\frac{1}{2}$,则双曲线的离心率为$\frac{\sqrt{10}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.函数f(x)=$\frac{ax+1}{x-2}$满足f(4-x)+f(x)=2.
(Ⅰ)求a的值,并用函数单调性的定义证明f(x)在(3,+∞)上是减函数;
(Ⅱ)若g(x)=|x+a|+|2x-3|,画出函数g(x)的简图并求出该函数的值域.

查看答案和解析>>

同步练习册答案