相关习题
 0  238954  238962  238968  238972  238978  238980  238984  238990  238992  238998  239004  239008  239010  239014  239020  239022  239028  239032  239034  239038  239040  239044  239046  239048  239049  239050  239052  239053  239054  239056  239058  239062  239064  239068  239070  239074  239080  239082  239088  239092  239094  239098  239104  239110  239112  239118  239122  239124  239130  239134  239140  239148  266669 

科目: 来源: 题型:选择题

18.已知函数$f(x)=lnx-\frac{{m({x+n})}}{x+1}$(m>0,n∈R)在(0,+∞)上不单调,若m-n>λ恒成立,则实数λ的取值范围为(  )
A.[3,+∞)B.[4,+∞)C.(-∞,3]D.(-∞,4]

查看答案和解析>>

科目: 来源: 题型:解答题

17.实数m取什么数值时,复数z=(m-4)+(m2-5m-6)i分别是:
(Ⅰ)实数?
(Ⅱ)虚数?
(Ⅲ)纯虚数?

查看答案和解析>>

科目: 来源: 题型:填空题

16.若复数z满足i(z+1)=-3+2i,则z的虚部是3.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知$\frac{a+2i}{i}$=b+i(其中a,b∈R,i为虚数单位),则a+b的值为(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,左焦点是F1
(1)若左焦点F1与椭圆E的短轴的两个端点是正三角形的三个顶点,点$Q({\sqrt{3},\frac{1}{2}})$在椭圆E上.求椭圆E的方程;
(2)过原点且斜率为t(t>0)的直线l1与(1)中的椭圆E交于不同的两点G,H,设B1(0,1),A1(2,0),求四边形A1GB1H的面积取得最大值时直线l1的方程;
(3)过左焦点F1的直线l2交椭圆E于M,N两点,直线l2交直线x=-p(p>0)于点P,其中p是常数,设$\overrightarrow{PM}=λ\overrightarrow{M{F_1}}$,$\overrightarrow{PN}=μ\overrightarrow{N{F_1}}$,计算λ+μ的值(用p,a,b的代数式表示).

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求{an}的通项公式;
(2)设${b_{n+1}}=2{b_n}-{2^{n+1}}$,b1=8,Tn是数列{bn}的前n项和,求正整数k,使得对任意n∈N*均有Tk≥Tn恒成立;
(3)设${c_n}=\frac{{{a_{\;n\;+\;1}}}}{{(1+{a_n})(1+{a_{\;n\;+\;1}})}}$,Rn是数列{cn}的前n项和,若对任意n∈N*均有Rn<λ恒成立,求λ的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.下列说法正确的是(  )
A.存在x0∈R,使得$1-{cos^3}{x_0}={log_2}\frac{1}{10}$
B.函数y=sin2xcos2x的最小正周期为π
C.函数$y=cos2({x+\frac{π}{3}})$的一个对称中心为$({-\frac{π}{3},0})$
D.角α的终边经过点(cos(-3),sin(-3)),则角α是第三象限角

查看答案和解析>>

科目: 来源: 题型:选择题

11.点M(x,y)在圆x2+(y-2)2=1上运动,则$\frac{xy}{{4{x^2}+{y^2}}}$的取值范围是(  )
A.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)B.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)∪{0}C.$[{-\frac{1}{4},0})∪({0,\frac{1}{4}}]$D.$[{-\frac{1}{4},\frac{1}{4}}]$

查看答案和解析>>

科目: 来源: 题型:填空题

10.由3个1和3个0组成的二进制的数有20个.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知一个简单几何的三视图如图所示,若该几何体的体积为24π+48,则该几何体的表面积为(  )
A.24π+48B.$24π+90+6\sqrt{41}$C.48π+48D.$24π+66+6\sqrt{41}$

查看答案和解析>>

同步练习册答案