相关习题
 0  239259  239267  239273  239277  239283  239285  239289  239295  239297  239303  239309  239313  239315  239319  239325  239327  239333  239337  239339  239343  239345  239349  239351  239353  239354  239355  239357  239358  239359  239361  239363  239367  239369  239373  239375  239379  239385  239387  239393  239397  239399  239403  239409  239415  239417  239423  239427  239429  239435  239439  239445  239453  266669 

科目: 来源: 题型:选择题

8.按如图所示的程序框图,若输入a=81,则输出的i=(  )
A.14B.17C.19D.21

查看答案和解析>>

科目: 来源: 题型:选择题

7.阅读程序框图,该算法的功能是输出(  )
A.数列{2n-1}的前 4项的和B.数列{2n-1}的第4项
C.数列{2n}的前5项的和D.数列?{2n-1}的第5项

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>c})$的长轴长为 4,离心率为$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆 C的方程;
(2)过椭圆 C上的任意一点 P,向圆O:x2+y2=r2(0<r<b)引两条切线l1,l2,若l1,l2的斜率乘积恒为定值,求圆 O的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知数列{an}的前 n项和为 Sn,且满足a1=1,an•an+1=2Sn,设${b_n}=\frac{{2{a_n}-1}}{{{3^{a_n}}}}$,则数列{bn}的前 n项和为$1-\frac{n+1}{3^n}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.在平面直角坐标系 xOy中,已知抛物线E:y2=2px(p>0)的焦点为F,P是抛物线 E上位于第一象限内的任意一点,Q是线段 PF上的点,且满足$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,则直线 OQ的斜率的最大值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.执行如图所示的程序框图,则输出 S的值为(  )
A.-lg9B.-1C.-lg11D.1

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且过点M(4,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m(m≠-3)与椭圆C交于P,Q两点,记直线MP,MQ的斜率分别为k1,k2,试探究k1+k2是否为定值.若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知点P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),P5(x5,y5),P6(x6,y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为(  )
A.y2=4xB.y2=8xC.y2=12xD.y2=16x

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为(  )
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目: 来源: 题型:选择题

19.$\frac{{{i^{2017}}}}{1-2i}$=(  )
A.$-\frac{2}{5}+\frac{1}{5}i$B.$\frac{2}{5}-\frac{1}{5}i$C.$\frac{2}{5}+\frac{1}{5}i$D.$-\frac{2}{5}-\frac{1}{5}i$

查看答案和解析>>

同步练习册答案