相关习题
 0  240803  240811  240817  240821  240827  240829  240833  240839  240841  240847  240853  240857  240859  240863  240869  240871  240877  240881  240883  240887  240889  240893  240895  240897  240898  240899  240901  240902  240903  240905  240907  240911  240913  240917  240919  240923  240929  240931  240937  240941  240943  240947  240953  240959  240961  240967  240971  240973  240979  240983  240989  240997  266669 

科目: 来源: 题型:填空题

6.已知椭圆焦点在y轴上,且过(0.,2)和(1,0)两个点,则这个椭圆的标准方程为$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{1}$=1.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知α是第一象限角,且sinα=2sinβ,tanα=3tanβ,则cosα的值是(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{5}{13}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知函数f(x)=tanωx在区间(-$\frac{π}{2}$,$\frac{π}{2}$)内是减函数,则ω的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.[1,0)D.(0,1]

查看答案和解析>>

科目: 来源: 题型:填空题

3.某同学解关于x的不等式x2-7ax+3a<0(a>0)时,得到x的取值区间为(-2,3),若这个区间的端点有一个是错误的,那么正确的x的取值区间应是($\frac{1}{2}$,3).

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知($\frac{1}{2}$)a<($\frac{1}{2}$)b<1,则下列不等式成立的是(  )
A.(a-1)2>(b-1)2B.lna>lnbC.a+b>1D.$\sqrt{a}$<$\sqrt{b}$

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{5x,x>0}\\{-2,x=0}\\{(x+3)^{\frac{1}{2}},x<0}\end{array}\right.$,b=f(f(f(0))),若y=xa-b是偶函数,且在(0,+∞)上是减函数,则自然数a=1或3.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),则lna1+lna2+…+lna20=(  )
A.20B.30C.40D.50

查看答案和解析>>

科目: 来源: 题型:选择题

11.设 a=1.10.9,b=0.91.1,c=0.90.9,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目: 来源: 题型:解答题

10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案