相关习题
 0  241268  241276  241282  241286  241292  241294  241298  241304  241306  241312  241318  241322  241324  241328  241334  241336  241342  241346  241348  241352  241354  241358  241360  241362  241363  241364  241366  241367  241368  241370  241372  241376  241378  241382  241384  241388  241394  241396  241402  241406  241408  241412  241418  241424  241426  241432  241436  241438  241444  241448  241454  241462  266669 

科目: 来源: 题型:解答题

10.已知正项等比数列{bn}的前n项和为Sn,b3=4,S3=7,数列{an}满足an+1-an=n+1(n∈N*),且a1=b1
(1)求数列[an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和Sn,求证:Sn<2.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知f(x)=sinx+1,g(x)=mex,若?x∈[0,π],都有f(x)≤g(x)成立,则m的取值范围是[1,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

8.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
时间x12345
命中率y0.40.50.60.60.4
(1)用线性回归分析的方法求回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.(2)预测小李该月6号打6小时篮球的投篮命中率.
$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.十二届全国人大常委会第十八次会议于2015年12月27日通过关于修改人口与计划生育法的决定,“全面二孩”从2016年元旦开始实施,沙坪坝区妇联为了解该去市民不同年龄层对“全面二孩”政策的态度,随机抽取了M名二胎妈妈对其年龄进行调查,得到如下所示的频率分布表和频率分布直方图:
分组频数频率
[20,25)200.25
[25,30)50n
[30,35)mP
[35,40]40.05
合计MN
(1)求表中p的值和频率分布直方图中a的值;
(2)拟用分层抽样的方法从年龄在[20,25)和[35,40)的二胎妈妈中共抽取6人召开一个座谈会,现从这6人中选2人,求这两人在不同年龄组的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

6.数列{an}满足a1=1,$\sqrt{{{a}_{n}}^{2}+2}$=an+1(n∈N+).
(1)求证:数列{an2}是等差数列,并求出{an}的通项公式;
(2)若bn=$\frac{2}{{a}_{n}+{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知两直线l1:(3+m)x+4y=5-3m和l2:2x+(5+m)y-8=0.
(1)若l1∥l2,求实数m的值;
(2)当m=1时,若l3⊥l1,且l3过点(1,4),求直线l3的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=sinxcosx+sin2x.
(1)求函数f(x)的递增区间;
(2)若a为锐角,且f($\frac{α}{2}$)=$\frac{3\sqrt{2}+5}{10}$,求cosα.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数f(x)=$\sqrt{3}$sinx+cosx在x0处取得最大值,则cos(x0-π)=-$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知(x+2)2n=a0+a1(x+1)+a2(x+1)2+…+a2n-1(x+1)2n-1+a2n(x+1)2n,n≥2,n∈N+,则a2+a4+…+a2n-2+a2n=2${\;}^{2n-1}-\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.闭区间[0,5]上等可能的任取一个实数x,那么不等式x2-x-2≤0 成立的概率为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案