相关习题
 0  25517  25525  25531  25535  25541  25543  25547  25553  25555  25561  25567  25571  25573  25577  25583  25585  25591  25595  25597  25601  25603  25607  25609  25611  25612  25613  25615  25616  25617  25619  25621  25625  25627  25631  25633  25637  25643  25645  25651  25655  25657  25661  25667  25673  25675  25681  25685  25687  25693  25697  25703  25711  266669 

科目: 来源:不详 题型:单选题

某城市2012年的空气质量状况如下表所示:
污染指数T 30 60 100 110 130 140
概率P
1
10
1
6
1
3
7
30
2
15
1
30
其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,该城市2012年空气质量达到良或优的概率为(  )
A.
3
5
B.
1
180
C.
1
19
D.
5
6

查看答案和解析>>

科目: 来源:丰台区一模 题型:解答题

某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目.每名学生至多选修一个模块,
2
3
的学生选修过《几何证明选讲》,
1
4
的学生选修过《数学史》,假设各人的选择相互之间没有影响.
(Ⅰ)任选一名学生,求该生没有选修过任何一个模块的概率;
(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率.

查看答案和解析>>

科目: 来源:西城区二模 题型:解答题

甲,乙两人射击,每次射击击中目标的概率分别是
1
3
1
4
.现两人玩射击游戏,规则如下:若某人某次射击击中目标,则由他继续射击,否则由对方接替射击.甲、乙两人共射击3次,且第一次由甲开始射击.假设每人每次射击击中目标与否均互不影响.
(Ⅰ)求3次射击的人依次是甲、甲、乙,且乙射击未击中目标的概率;
(Ⅱ)求乙至少有1次射击击中目标的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.
设甲、乙的射击相互独立.
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

小张参加某电视台举办的百科知识竞赛的预选赛,只有闯过了三关的人才能参加决赛.按规则:只有过了第一关,才能去闯第二关;只有过了第二关,才能去闯第三关.对小张来说,过第一关的概率为0.8,如果不按规则去闯第一关,而直接去闯第二关能通过的概率为0.75,直接去闯第三关能通过的概率为0.5.
(Ⅰ)求小张在第二关被淘汰的概率;
(Ⅱ)求小张不能参加决赛的概率.

查看答案和解析>>

科目: 来源:海淀区一模 题型:解答题

3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求
(Ⅰ)这3名志愿者中在10月1日都参加社区服务工作的概率;
(Ⅱ)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲乙两人约定以“五局三胜”制进行乒乓球比赛,比赛没有平局,设甲在每局中获胜的概率为
2
3
,且各局胜负相互独立,已知比赛中,乙嬴了第一局比赛.
(I)求甲获胜的概率;(用分数作答)
(Ⅱ)设比赛总的局数为ξ,求ξ的分布列及期望Eξ.(用分数作答)

查看答案和解析>>

科目: 来源:崇明县二模 题型:填空题

张同学、李同学与黄同学三人进行定点投篮活动.如果张同学、李同学与黄同学三人定点投篮的命中率分别为
3
5
2
5
3
4
,则张同学、李同学与黄同学分别投篮一次,至少有一个人没有命中的概率等于______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲、乙、丙3人分别与丁进行围棋比赛,如果甲、乙2人获胜的概率均为0.8,丙获胜的概率为0.6,求甲、乙、丙3人中:
(1)3人都获胜的概率;
(2)其中恰有1人获胜的概率;
(3)至少有2人获胜的概率.

查看答案和解析>>

科目: 来源:天津模拟 题型:解答题

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案