相关习题
 0  29137  29145  29151  29155  29161  29163  29167  29173  29175  29181  29187  29191  29193  29197  29203  29205  29211  29215  29217  29221  29223  29227  29229  29231  29232  29233  29235  29236  29237  29239  29241  29245  29247  29251  29253  29257  29263  29265  29271  29275  29277  29281  29287  29293  29295  29301  29305  29307  29313  29317  29323  29331  266669 

科目: 来源: 题型:

已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
PM
=
1
2
PA
+
PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足
PP1
+
PP2
=
PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,椭圆C2
x2
a2
y2
b2
=1
的焦点为F1,F2,|A1B1|=
7
SB1A1B2A2=2SB1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n为过原点的直线,l是与n垂直相交于点P,与椭圆相交于A,B两点的直线|
OP
|=1,是否存在上述直线l使
OA
OB
=0成立?若存在,求出直线l的方程;并说出;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

设F1,F2分别是椭圆E:x2+
y2b2
=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.
(Ⅰ)求|AB|;
(Ⅱ)若直线l的斜率为1,求b的值.

查看答案和解析>>

科目: 来源: 题型:

设F1,F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,过F1斜率为1的直线?与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程

查看答案和解析>>

科目: 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,
AF
=2
FB

(1)求椭圆C的离心率;
(2)如果|AB|=
15
4
,求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知抛物线C1:x2+by=b2经过椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点.
(1)求椭圆C2的离心率;
(2)设Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.

查看答案和解析>>

科目: 来源: 题型:

设椭圆C2
x2
a2
+
y2
b2
=1(a>b>0),抛物线C2:x2+by=b2
(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),Q(3
3
5
4
)
,又M、N为C1与C2不在y轴上的两个交点,若△AMN的垂心为B(0,
3
4
b)
,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程.

查看答案和解析>>

科目: 来源: 题型:

精英家教网在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).

查看答案和解析>>

科目: 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案