相关习题
 0  30102  30110  30116  30120  30126  30128  30132  30138  30140  30146  30152  30156  30158  30162  30168  30170  30176  30180  30182  30186  30188  30192  30194  30196  30197  30198  30200  30201  30202  30204  30206  30210  30212  30216  30218  30222  30228  30230  30236  30240  30242  30246  30252  30258  30260  30266  30270  30272  30278  30282  30288  30296  266669 

科目: 来源: 题型:

(Ⅰ)已知矩阵M=
2
3
-
1
3
1
3
1
3
,△ABC的顶点为A(0,0),B(2,0),C(1,2),求△ABC在矩阵M-1的变换作用下所得△A′B′C′的面积.
(Ⅱ)极坐标的极点是直角坐标系原点,极轴为X轴正半轴,直线l的参数方程为
x=x0+
1
2
t
y=
3
2
t

(t为参数).⊙O的极坐标方程为ρ=2,若直线l与⊙O相切,求实数x0的值.
(Ⅲ)已知a,b,c∈R+,且
1
a
+
2
b
+
3
c
=2
,求a+2b+3c的最小值及取得最小值时a,b,c的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知四棱锥P-ABCD的直观图(如图1)及左视图(如图2),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求异面直线PD与AB所成角的余弦值;
(Ⅲ)求平面PAB与平面PCD所成锐二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

在等差数列{an}中,a1=1,Sn为前n项和,且满足S2n-2Sn=n2,n∈N*
(1)求a2及{an}的通项公式;
(2)记bn=n+qan(q>0),求{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

15、现有5男5女共10个小孩设想做如下游戏:先让4个小孩(不全为男孩)等距离站在一个圆周的4个位置上,如果相邻两个小孩同为男孩或同为女孩,则在他(她)们中间站进一个男孩,否则站进一个女孩,然后让原来的4个小孩暂时退出,即算一次活动.这种活动按上述规则继续进行,直至圆周上所站的4个小孩都为男孩为止,则这样的活动最多可以进行
4
次.

查看答案和解析>>

科目: 来源: 题型:

13、x2(1-x)6展开式中含x4项的系数为
15

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,在锐角△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6,则∠BAC的大小为
 

查看答案和解析>>

科目: 来源: 题型:

i为虚数单位,若
a
1-i
=
1+i
i
,若
a
1-i
=
1+i
i
,则a的值为(  )
A、iB、-iC、-2iD、2i

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知在△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD,垂足为D:
(1)求证:AB⊥AC;
(2)求点D和向量
AD
的坐标;
(3)设∠ABC=θ,求cosθ的值;
(4)求证:AD2=BD•DC.

查看答案和解析>>

科目: 来源: 题型:

已知
OP
=(2,1)
OA
=(1,7)
OB=(5,1)
,设C是直线OP上的一点,其中O为坐标原点.
(1)求使
CA
CB
取得最小值时向量
OC
的坐标;
(2)当点C满足(1)时,求cos∠ACB.

查看答案和解析>>

同步练习册答案