相关习题
 0  36441  36449  36455  36459  36465  36467  36471  36477  36479  36485  36491  36495  36497  36501  36507  36509  36515  36519  36521  36525  36527  36531  36533  36535  36536  36537  36539  36540  36541  36543  36545  36549  36551  36555  36557  36561  36567  36569  36575  36579  36581  36585  36591  36597  36599  36605  36609  36611  36617  36621  36627  36635  266669 

科目: 来源: 题型:

已知sinθ+cosθ=-
5
3
,则sin2θ的值为(  )

查看答案和解析>>

科目: 来源: 题型:

设向量
a
=(2,x-1),
b
=(x+1,4),则“x=3”是“
a
b
”的(  )

查看答案和解析>>

科目: 来源: 题型:

(2011•扬州三模)理科附加题:
已知(1+
12
x)n
展开式的各项依次记为a1(x),a2(x),a3(x),…an(x),an+1(x).
设F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值;
(Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目: 来源: 题型:

如图,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=PA=1,AD=3,E是PB的中点.
(1)求证:AE⊥平面PBC;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ex+
a
ex
(a∈R)
(其中e是自然对数的底数)
(1)若f(x)是奇函数,求实数a的值;
(2)若函数y=|f(x)|在[0,1]上单调递增,试求实数a的取值范围;
(3)设函数?(x)=
1
2
(x2-3x+3)[f(x)+f′(x)]
,求证:对于任意的t>-2,总存在x0∈(-2,t),满足
?′(x0)
ex0
=
2
3
(t-1)2
,并确定这样的x0的个数.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,P、Q是椭圆C上的两个动点,M(1,
6
2
)
是椭圆上一定点,F是其左焦点,且PF、MF、QF成等差数列.
(1)求椭圆C的方程;
(2)判断线段PQ的垂直平分线是否经过一个定点,若定点存在,求出定点坐标;若不经过定点,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为a元(a>0).
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目: 来源: 题型:

已知三次函数f(x)=
a
3
x3+
b
2
x2+cx+d(2a<b)
在R上单调递增,则
a+b+c
b-2a
的最小值为
4
4

查看答案和解析>>

科目: 来源: 题型:

已知:点P的坐标(x,y)满足:
x-4y+3≤0
3x+5y-26≤0
x-1≥0.
及A(4,0),则|
OP
|•cos∠AOP(O为坐标原点)的最大值是
89
17
89
17

查看答案和解析>>

同步练习册答案