相关习题
 0  48885  48893  48899  48903  48909  48911  48915  48921  48923  48929  48935  48939  48941  48945  48951  48953  48959  48963  48965  48969  48971  48975  48977  48979  48980  48981  48983  48984  48985  48987  48989  48993  48995  48999  49001  49005  49011  49013  49019  49023  49025  49029  49035  49041  49043  49049  49053  49055  49061  49065  49071  49079  266669 

科目: 来源: 题型:

统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=
1
128000
x3-
3
80
x+8(0<x<120)

(1)当x=64千米/小时时,要行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?

查看答案和解析>>

科目: 来源: 题型:

数列

   (1)求

   (2)若存在一个实数为等差数列,求

   (3)求数列{an}的前n项和

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.
(1)求a,b的值;   
(2)若f(x)有极大值28,求f(x)在[3,3]上的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数f(x)区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
(n∈N*,e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
12
x2-(3+m)x+3mlnx
,m∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设点A(x0,f(x0))为函数f(x)的图象上任意一点,若曲线f(x)在点A处的切线的斜率恒大于-3,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
12
x2-(3+m)x+3mlnx
,m∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设A(x1,f(x1)),B(x2,f(x2))为函数f(x)的图象上任意不同两点,若过A,B两点的直线l的斜率恒大于-3,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知a∈R,函数f(x)=xm•|xn-a|.
(1)若m=0,n=1,写出函数f(x)的单调递增区间(不必证明);
(2)若m=1,n=1,当a>2时,求函数y=f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,实线部分DE,DF,EF是某风景区设计的游客观光路线平面图,其中曲线部分EF是以AB为直径的半圆上的一段弧,点O为圆心,△ABD是以AB为斜边的等腰直角三角形,其中AB=2千米,∠EOA=∠FOB=2x(0<x<
π4
)
.若游客在每条路线上游览的“留恋度”均与相应的线段或弧的长度成正比,且“留恋度”与路线DE,DF的长度的比例系数为2,与路线EF的长度的比例系数为1,假定该风景区整体的“留恋度”y是游客游览所有路线“留恋度”的和.
(I)试将y表示为x的函数;
(II)试确定当x取何值时,该风景区整体的“留恋度”最佳?

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=ln(1+ax),g(x)=x2-ax,其中a为实数.
(Ⅰ)当a=2时,求函数y=f(x)+g(x)的极小值;
(Ⅱ)是否存在实数a,使得函数y=f(x)与函数y=g(x)在区间[1,+∞)上单调性相同?若存在,请求出实数a的取值范围;若不存在,请说明理由;
(Ⅲ)若对任意的实数a∈(1,2),总存在一个与a无关的实数x1,且x1∈[
1
2
,1]
,使得f(x1)+g(x1)>m-
1
5
a2
恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知f(x)=4|x|3-2a|x|.
(1)设f(x)图象在点(-1,f(-1))处的切线方程是2x+y+b=0,求b的值.
(2)是否存在实数a,使得函数在[-1,1]内的最小值为-2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案