科目: 来源: 题型:
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为
立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建筑费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
![]()
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.
查看答案和解析>>
科目: 来源: 题型:
已知函数f(x)=
(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.
查看答案和解析>>
科目: 来源: 题型:
已知x>
,函数f(x)=x2,h(x)=2elnx(e为自然常数).
(1)求证:f(x)≥h(x);
(2)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图像为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图像为边界”和“函数f(x),g(x)的图像有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知函数f(x)=ex+ax,g(x)=exlnx.(e≈2.718 28…).
(1)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1垂直,求a的值;
(2)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(3)当a=-1时,是否存在实数x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
设f(x)=
x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N*),f(x)的单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a).
查看答案和解析>>
科目: 来源: 题型:
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当t≠0时,求f(x)的单调区间;
(3)证明:对任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
查看答案和解析>>
科目: 来源: 题型:
已知函数f(x)=
ax2-(2a+1)x+2lnx(a∈R).
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
设函数f(x)=-
x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在(1,f(1))点处的切线的方程;
(2)求函数f(x)的单调区间与极值;
(3)已知函数g(x)=f(x)+
有三个互不相同的零点,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
设函数f(x)=-
x3+x2+(a2-1)x,其中a>0.
(1)若函数y=f(x)在x=-1处取得极值,求a的值;
(2)已知函数f(x)有3个不同的零点,分别为0、x1、x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com