相关习题
 0  73028  73036  73042  73046  73052  73054  73058  73064  73066  73072  73078  73082  73084  73088  73094  73096  73102  73106  73108  73112  73114  73118  73120  73122  73123  73124  73126  73127  73128  73130  73132  73136  73138  73142  73144  73148  73154  73156  73162  73166  73168  73172  73178  73184  73186  73192  73196  73198  73204  73208  73214  73222  266669 

科目: 来源:2010年上海市松江二中高二第二学期5月月考数学试题 题型:解答题

(12分)已知点(x, y)是曲线C上任意一点,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.
(1)求曲线的方程;
(2)求m的取值范围.

查看答案和解析>>

科目: 来源:广东省佛山市2010年普通高中高三教学质量检测(二)数学文科 题型:解答题

如图,抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.

(Ⅰ)求双曲线的方程;
(Ⅱ)以为圆心的圆与双曲线的一条渐近线相切,
.已知点,过点作互相垂
直且分别与圆、圆相交的直线,设被圆
得的弦长为被圆截得的弦长为是否为定值?
请说明理由.

查看答案和解析>>

科目: 来源:2010年广东省广州市番禺区高二下学期期中考试数学(理) 题型:解答题

(14分)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(1)求t的值;
(2)若点PQ是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目: 来源:2010届广东华南师范大学附属中学高三模拟数学试题(三) 题型:解答题

(满分12分)直线l 与抛物线y2 = 4x 交于两点ABO 为原点,且= -4.
(I)       求证:直线l 恒过一定点;
(II)     若 4≤| AB | ≤,求直线l 斜率k 的取值范围;
(Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ 能否等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.

查看答案和解析>>

科目: 来源:2010年广东省广州市番禺区高二下学期期中考试数学(文) 题型:解答题

(14分)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(1)求t的值;
(2)若点PQ是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目: 来源:2010年浙东北三校高二下学期期中联考数学(理) 题型:解答题

已知直线与抛物线交于两点,且为坐标原点),
于点,点的坐标为
(1)求直线的方程
(2)抛物线的方程

查看答案和解析>>

科目: 来源:2010年浙东北三校高二下学期期中联考数学(理) 题型:解答题

过双曲线的右焦点作倾斜角为的直线交双曲线于A、B两点,
(1)求线段AB的中点C到右焦点的距离。
(2)求线段AB的长。   

查看答案和解析>>

科目: 来源:2010年河北省正定中学高三下学期第三次模拟考试数学(文) 题型:解答题

(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.
(Ⅲ)设直线与椭圆交于两点,若直线轴于点,且,当变化时,求 的值;   

查看答案和解析>>

科目: 来源:2010年浙东北三校高二下学期期中联考数学(文) 题型:解答题

(本小题满分11分)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线的标准方程;
(2)若的三个顶点在抛物线上,且点的横坐标为1,过点分别作抛物线的切线,两切线相交于点,直线轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:2010年浙东北三校高二下学期期中联考数学(文) 题型:解答题

(本小题满分10分)椭圆的离心率为,且过点
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,求的值。

查看答案和解析>>

同步练习册答案