精英家教网 > 初中数学 > 题目详情
16.如图,在△ABC中,∠C=90°,∠ABC=60°,若CD=2,AB=6,则S△ABD=$\frac{9\sqrt{3}}{2}$-3.

分析 先利用含30°的直角三角形的性质求出BC,AC进而得出AD,最后用三角形的面积公式即可得出结论.

解答 解:在Rt△ABC中,∠ABC=60°,
∴∠A=30°,
∵AB=6,
∴BC=$\frac{1}{2}$AB=3,AC=$\sqrt{3}$BC=3$\sqrt{3}$,
∵CD=2,
∴AD=AC-CD=3$\sqrt{3}$-2,
∴S△ABD=$\frac{1}{2}$AD•BC=$\frac{1}{2}$×(3$\sqrt{3}$-2)×3=$\frac{9\sqrt{3}}{2}$-3,
故答案为:$\frac{9\sqrt{3}}{2}$-3.

点评 此题是解直角三角形,主要考查了含30°的直角三角形的性质,三角形的面积公式,求出AD是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,已知点P是反比例函数y=-$\frac{2\sqrt{3}}{x}$图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)当⊙P运动到与x轴也相切于K点时,如图1,试判断四边形OAPK的形状,并说明理由;
(2)当⊙P运动到与x轴相交于B、C两点时,且四边形ACBP为菱形,如图2,求A、B、C三点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+$\frac{9}{4}$经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式;
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.E为正方形ABCD的边CD上一点,将△ADE绕A点顺时针旋转90°,得△ABF,G为EF中点.下列结论:①G在△ABF的外接圆上;②EC=$\sqrt{2}$BG;③B,G,D三点在同一条直线上;④若S四边形BGEC=$\frac{1}{4}$S正方形ABCD,那么E为DC的黄金分割点.正确的是(  )
A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线y=-x2+bx+3交x轴负、正半轴于A、B两点,交y轴与点C,且tan∠ACO=$\frac{1}{3}$,△ABC的外接圆的圆心为M.
(1)求该二次函数的解析式;
(2)在x轴上方的抛物线上是否存在一点P,使S△BCP=3,若存在请求出点P坐标,若不存在,说明理由;
(3)圆上是否存在Q点,使△AOC与△BQC相似?若存在,直接写出点Q坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系内,点O为坐标原点,抛物线y=ax2+bx+2交x正半轴 于点A,交x轴负半轴于点B,交y轴于点C,OB=OC,连接AC,tan∠OCA=2.
(1)求抛物线的解析式;
(2)点P是第三象限抛物线y=ax2+bx+2上的一个动点,过点P作y轴的平行线交直线AC于点D,设PD的长为d,点P的横坐标为t,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PA,PC,当△ACP的面积为30时,将△APC沿AP折叠得△APC′,点C′为点C的对应点,求点C′坐标并判断点C′是否在抛物线y=ax2+bx+2上,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直角坐标系中,O为原点,A(6,0),在等腰三角形ABO中,OB=BA=5,点B在第一象限,C(0,k)为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连结AD.
(1)①求点B的坐标;②若BD∥OC,求k的值.
(2)求证:OC=AD;
(3)设直线AD与y轴交于点M(0,m),当点C在y轴上运动时,点M的位置是否改变?若改变,求m与k的函数关系式,若不变,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,直线a经过点A(0,1)且垂直于y轴,直线b经过点B(2,0)且垂直于x轴,反比例函数y=$\frac{k}{x}$(k≠0)在第一象限内的图象与直线a,b分别交于点E、D.
(1)用k表示:点E的坐标是(k,1),点D的坐标是(2,$\frac{k}{2}$).
(2)用k表示:OE2,OD2和DE2
(3)按下列条件求k的值:
        ①以O,D,E为顶点不能构成三角形;
        ②以O,D,E为顶点能构成直角三角形.

查看答案和解析>>

同步练习册答案