精英家教网 > 初中数学 > 题目详情
如图,已知梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=BC=4,在线段AB上有一动点E,设BE=x,△DEC的面积为y,问:精英家教网
(1)你能找出y与x的函数关系吗?(写出自变量x的取值范围)
(2)△DEC的面积可能等于5吗?说明你的理由.
(3)探究何时△DEC的面积取得最大(小)值,并求出相应的最大(小)值.
分析:(1)将△DEC的面积转化为S梯形-S三角形AED-S三角形BEC,建立起y与x的函数关系式;
(2)将面积5代入(1),求出x的取值范围,若符合题意即△DEC的面积可能等于5;
(3)根据一次函数的增减性,将自变量的最大值和最小值代入解析式,可求得△DEC的面积取得最大(小)值.
解答:解:(1)y=S梯形-S三角形AED-S三角形BEC
=
1
2
×4×(2+4)-
1
2
×4×x-
1
2
(4-x)×2,
=12-2x-4+x,
=8-x,
自变量取值范围0≤x≤4,

(2)8-x=5,
x=3,
而0<3<4,
∴△DEC的面积能等于5;

(3)∵y=-x+8中,-1<0,
∴y随x的增大而减小,
当x=0时,y最大值是8,
当x=4时,y最小值是4.
点评:本题将求函数解析式及其最值和图形的变化结合起来,既考查了对一次函数性质的掌握情况又考查了同学们的探索发现的能力,是一道难度适中的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,点P从点A开始沿AB边向点B以3cm/s的速度移动,点Q从点B开始沿BC边向点C以1cm/s的速度移动,P,Q分别从A,B同时出发,当其中一精英家教网点到达终点时,另一点也随之停止.过Q作QD∥AB交AC于点D,连接PD,设运动时间为t秒时,四边形BQDP的面积为s.
(1)用t的代数式表示QD的长.
(2)求s关于t的函数解析式,并求出运动几秒梯形BQDP的面积最大?最大面积是多少?
(3)连接QP,在运动过程中,能否使△DPQ为等腰三角形?若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•遂宁)如图,已知等腰△ABC的面积为4cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为
3
3
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

同步练习册答案