精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+x+2交x轴于A、B两点,交y轴于点C.
(1)求证:△ABC为直角三角形;
(2)在y轴上找点P,连接PB,若△PBC为等腰三角形,求:点P的坐标;
(3)在抛物线BC上取点E,连接CE和BE,△BCE的面积是否存在最大值?若存在,求出点E的坐标及△BCE的最大面积.

【答案】分析:(1)求得AC、BC、AB长,利用勾股定理的逆定理求得∠ACB=90°,或者利用△AOC∽△COB求证.
(2)应分PB=BC,PC=BC,PC=PB三种情况进行解答.
(3)用一个字母设出点E坐标,表示出△BCE的面积.利用二次函数求出最值即可.
解答:解:(1)可得A(-1,0),B(4,0),C(0,2)
由AC2+BC2=AB2,得△ABC是以∠ACB为直角的直角三角形.
也可由△AOC∽△COB得出结果.

(2)存在四个点(0,-2);(0,-3);(0,-2+2),(0,2+2);

(3)设E点坐标(m,-m2+m+2),
过E作ED⊥x轴交轴于点D,交BC于点F,
由△BDF∽△BOC得DF=2-
EF=DE-DF=-m2+2m,
S△BCE=S△CEF+S△BEF=EF•OD+EF•BD=EF•OB=-(m-2)2+4,
∴最大面积为4.
此时E(2,3).
点评:本题考查了勾股定理的逆定理的运用,等腰三角形的性质,以及二次函数最值的运用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案