精英家教网 > 初中数学 > 题目详情
求由方程|x-1|+|y-1|=1确定的曲线所围成的图形的面积。

由方程知
解得
(1)当时,方程为
(2)当时,方程为
(3)当时,方程为
(4)当时,方程为
如下图所示,这四条线段围成一个边长为的正方形
∴这个正方形的面积为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则有x1+x2=-
b
a
x1x2=
c
a
,由上式可知,一元二次方程的两根和、两根积是由方程的系数确定的,我们把这个关系称为一元二次方程根与系数的关系.若α,β是方程x2-x-1=0的两根,记S1=α+β,S222,…,Snnn
(1)S1=
 
S2=
 
S3=
 
S4=
 
直接写出结果)
(2)当n为不小于3的整数时,由(1)猜想Sn,Sn-1,Sn-2有何关系?
(3)利用(2)中猜想求(
1+
5
2
)7+(
1-
5
2
)7
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

由方程x2+4x+4=0的根为x1=x2=-2,可得x1+x2=-4,x1.x2=4,则
(1)方程x2-5x+6=0的根为x1=
 
,x2=
 
,x1+x2=
 
,x1.x2=
 

(2)x1,x2是方程ax2+bx+c=0的两个根,则x1+x2=
 
,x1.x2=
 

(3)已知x1,x2(其中x1>x2)是方程2x2+5x-2=0的两个根,由(2)的结论,不解方程求①x12+x22,②x1-x2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0,记它的两个根为x1,x2,由求根公式计算两个根的和与积为x1+x2=-
b
a
,x1•x2=
c
a
,一元二次方程两个根的和、两个根的积是由方程的系数确定的,这就是一元二次方程根与系数的关系.根据这段材料解决下列问题:
(1)设方程2x2-4x-1=0的两个根分别为x1,x2,则x1+x2=
2
2
,x1•x2=
-
1
2
-
1
2

(2)如果方程x2+bx-1=0的一个根是2+
3
,求方程的另一个根和实数b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题
若关于x的方程:mx-3=3x+5解是正整数,求m的整数值.
解:由方程:mx-3=3x+5得:
mx+3x=5+3
即:(m+3)x=8
∵x是正整数,m是整数
∴m+3是8的正整数约数
∴m+3=1或m+3=2或m+3=4或m+3=8
∴m=-2或m=-1或m=1或m=5

试仿照上面的解法,回答下面的问题:
若关于y的方程:ny+y+5=-4y+12解是正整数,求n的整数值.

查看答案和解析>>

同步练习册答案