精英家教网 > 初中数学 > 题目详情
19、在△ABC中,D,E分别是AC,AB上的点,BD与CE交于O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.请你从上述四个条件中选出两个条件,然后利用这两个条件证明△ABC是等腰三角形.(选出的条件用序号表示)
分析:此题是开放性试题,解答时根据题中已知条件,结合等腰三角形的判定方法来选择.
解答:解:可以选择①③;①④;②③;②④.
选①③证明;
∵∠EBO=∠DCO,BE=CD,∠EOB=∠DOC,
∴△EOB≌△DOC.
∴OB=OC.
∴∠OBC=∠OCB.
∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB.
∴△ABC是等腰三角形.
点评:本题考查了等腰三角形的判定及全等三角形的判定及性质;选择条件时要注意选择相对比较简单的,比较容易证明的,经常要结合三角形全等进行证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案