精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别是E、F,∠EAF=60°,BE=2,DF=3,则∠B=
 
度,SABCD=
 
分析:由四边形内角和为360°,得∠C=180°-∠EAF=120°,根据平行四边形邻角互补可得∠B=180°-∠C=60°,根据平行四边形的性质可知∠D=∠B=60°,在Rt△ABE和Rt△AFD中,可求AD,AE,再求平行四边形面积.
解答:解:在四边形AECF中,
∠C=360°-∠AEC-∠AFC-∠EAF
=360°-90°-90°-60°=120°.
∵AB∥CD,
∴∠B=180°-∠C=180°-120°=60°,
根据平行四边形的性质可得∠D=∠B=60°,
在Rt△ABE中,AE=2
3

在Rt△AFD中,AD=6,
∴SABCD=AD×AE=12
3

故答案为60,12
3
点评:解决本题的关键是根据四边形的内角和知识,平行四边形的性质,勾股定理等知识点得到平行四边形底边及底边上的高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案