精英家教网 > 初中数学 > 题目详情


已知抛物线上有不同的两点E和F

(1)求抛物线的解析式.
(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)当m,n为何值时,∠PMQ的边过点F.


(1)
(2)(m>0)
(3)当  时,∠PMQ的边过点F

解析解:(1)抛物线的对称轴为. ……..(1分)
∵ 抛物线上不同两个点E和F的纵坐标相同,
∴ 点E和点F关于抛物线对称轴对称,则 ,且k≠-2.
∴ 抛物线的解析式为.            ……..(2分)
(2)抛物线与x轴的交点为A(4,0),与y轴的交点为B(0,4),
∴ AB=,AM=BM=.                ……..(3分)
在∠PMQ绕点M在AB同侧旋转过程中,∠MBC=∠DAM=∠PMQ=45°,
在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,
在直线AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°.
∴ ∠BCM=∠AMD.
故 △BCM∽△AMD.                     ……..(4分)
∴ ,即 
故n和m之间的函数关系式为(m>0).          ……..(5分)
(3)∵ F上,
   ∴ 
  化简得,,∴ k1=1,k2=3.    
  即F1(-2,0)或F2(-4,-8).             ……..(6分)
  ①MF过M(2,2)和F1(-2,0),设MF为
  则   解得, ∴ 直线MF的解析式为
  直线MF与x轴交点为(-2,0),与y轴交点为(0,1).
  若MP过点F(-2,0),则n=4-1=3,m=
  若MQ过点F(-2,0),则m=4-(-2)=6,n=.   ……..(7分)
  ②MF过M(2,2)和F1(-4,-8),设MF为
  则  解得, ∴ 直线MF的解析式为
  直线MF与x轴交点为(,0),与y轴交点为(0,).
  若MP过点F(-4,-8),则n=4-()=,m=
  若MQ过点F(-4,-8),则m=4-,n=.  ……..(8分)
 故当  时,∠PMQ的边过点F.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线上有不同的两点EF

(1)求此抛物线的解析式.

(2)如图,抛物线x轴的正半轴和y轴分别交于点A和点BMAB的中点,∠PMQ=45°,MPy轴于点CMQx轴于点D.∠PMQAB的左侧以M为中心旋转,设AD 的长为mm>0),BC的长为n,求nm之间的函数关系式.

(3)在(2)的条件下,当mn为何值时,∠PMQ的边过点F

  

 


查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:第26章《圆》中考题集(06):26.1 旋转(解析版) 题型:解答题

已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2010•南充)已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:2010年四川省南充市中考数学试卷(解析版) 题型:解答题

(2010•南充)已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

同步练习册答案