精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,AD⊥BC于点D,AD=DC,∠FCD=∠BAD,点F在AD上,BF的延长线交AC于点E.
(1)求证:BE⊥AC;
(2)设CE的长为m,用含m的代数式表示AC+BF.
分析:(1)根据ASA证△ABD≌△CFD,推出BD=DF,求出∠AFE=∠BFD=45°,根据AD=DC求出∠DAC=∠ACD=45°,求出∠AEF=90°,根据垂直定义推出即可;
(2)求出BE=CE=m,AF=EF,推出AC+BF=CE+BE=2CE,代入求出即可.
解答:(1)证明:∵AD⊥BC于点D,
∴∠ADB=∠ADC=90°,
在△ABD和△CFD中
∠BAD=∠FCD
AD=DC
∠ADB=∠CDF

∴△ABD≌△CFD(ASA),
∴BD=DF,
∴∠FBD=∠BFD=45°,
∴∠AFE=∠BFD=45°,
又∵AD=DC,
∴∠DAC=∠ACD=45°,
∴∠AEF=90°,
∴BE⊥AC.

(2)解:∵∠EBC=∠ACD=45°,CE=m,
∴BE=CE=m
又∵∠AFE=∠FAE=45°,
∴AE=FE,
∴AC+BF
=CE+AE+BF
=CE+EF+BF
=CE+BE
=CE+CE
=2m.
点评:本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定,三角形的内角和定理,垂直定义等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案