精英家教网 > 初中数学 > 题目详情
(2008•常德)如图,已知AD∥BC,∠EAD=50°,∠ACB=40°,则∠BAC=    度.
【答案】分析:先根据两直线平行同位角相等,求出∠B,再利用三角形内角和定理即可求出.
解答:解:∵AD∥BC,∠EAD=50°,
∴∠EBC=EAD=50°.
在△ABC中,∠EBC=50°,∠ACB=40°,
∴∠BAC=180°-50°-40°=90°.
故应填90.
点评:本题应用的知识点为:两直线平行,同位角相等,和三角形内角和定理,熟练掌握性质和定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2008•常德)如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年广东省湛江市初中毕业生学业考试6月仿真数学试卷(解析版) 题型:解答题

(2008•常德)如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省常德市中考数学试卷(解析版) 题型:解答题

(2008•常德)如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的旋转》(03)(解析版) 题型:解答题

(2008•常德)如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:

(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2008•常德)如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线.

查看答案和解析>>

同步练习册答案