精英家教网 > 初中数学 > 题目详情

如图,M是线段AB上一点,且AB=10cm,C,D两点分别从M,B同时出发时1cm/s,3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上).
(1)当点C,D运动了2s,求这时AC+MD的值.
(2)若点C,D运动时,总有MD=3AC,求AM的长.

解:(1)当点C,D运动了2s时,CM=2 cm,BD=6 cm,
∵AB=10cm,CM=2cm,BD=6cm,
∴AC+MD=AB-CM-BD=10-2-6=2 cm;

(2)∵C,D两点的速度分别为1cm/s,3 cm/s,
∴BD=3CM.
又∵MD=3AC,
∴BD+MD=3CM+3AC,即BM=3AM,
∴AM=AB=2.5cm.
分析:(1)计算出CM及BD的长,进而可得出答案;
(2)根据题意可知BD+MD=3CM+3AC,即BM=3AM,依此即可求出AM的长.
点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,C是线段AB上一点,M是AC的中点,N是BC的中点
(1)若AM=1,BC=4,求MN的长度.
(2)若AB=6,求MN的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF、BD.
(1)AF与BD是否相等,为什么?
(2)如果点C在线段AB的延长线上,(1)中的结论是否成立?请作图,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,D是线段AB上的点,以BD为直径作⊙O,AP切⊙O于E,BC⊥AF于C,连接DE精英家教网、BE.
(1)求证:BE平分∠ABC;
(2)若D是AB中点,⊙O直径BD=3
3
,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D是线段AB上的一点,BD=2AD=4,以BD为直径作半圆O,过点A作半圆O的切线,切点为E,过点B作BC⊥AE于C交半圆于F,连接EF.有下列四个结论:
①∠A=30°;②BF=3CF;③
DE
=
EF
;④EF∥AB.
其中正确的结论是
①③④
①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形.
(1)求证:AE=BD;
(2)若AE交CD于M,BD交CE于N,连接MN,试判断△MCN的形状,并说明理由.

查看答案和解析>>

同步练习册答案