精英家教网 > 初中数学 > 题目详情

作业宝与三角形各边都相切的圆叫做三角形的________,内切圆的________叫做三角形的内心.内心到三角形的________相等.如图,⊙O是△ABC的内切圆,△ABC是⊙O的外接三角形.

内切圆    圆心    各边的距离
分析:根据三角形的内切圆以及内心的定义即可求解.
解答:与三角形各边都相切的圆叫做三角形的圆心内切圆,内切圆的圆心叫做三角形的内心.内心到三角形的各边的距离相等.
故答案是:内切圆;圆心;各边的距离.
点评:此题主要考查了三角形内切圆以及内心的定义,三角形的内心是三角形角平分线的交点是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r
S△OBC=
1
2
BC•r
S△OCA=
1
2
CA•r

S=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r

r=
2S
l

解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
精英家教网
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r,S△OBC=
1
2
BC•r,S△OCA=
1
2
CA•r
∴S△ABC=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

三角形的内切圆
(1)定义:与三角形各边都
相切
相切
的圆叫做三角形的内切圆.内切圆的圆心叫三角形的
内心
内心

(2)三角形的内心是三角形
三角平分线
三角平分线
的交点,它到三角形
三边
三边
的距离相等,都等于该三角形
内切圆的半径
内切圆的半径

(3)如图,若△ABC的三边分别为AB=c,BC=a,AC=b,其内切圆⊙O分别切BC、CA、AB于D、E、F.则AF=AE=
b+c-a
2
b+c-a
2
,BD=BF=
c+b-a
2
c+b-a
2
,CD=CE=
a+b-c
2
a+b-c
2
.∠BOC与∠A的关系是
∠BOC=90°+
1
2
∠A
∠BOC=90°+
1
2
∠A
,∠EDF与∠A的关系是
∠EDF=90°-
1
2
∠A
∠EDF=90°-
1
2
∠A
△ABC的面积S与内切圆半径r的关系是
r=
2s
a+b+c
r=
2s
a+b+c

(4)直角三角形的外接圆半径等于
斜边长的一半
斜边长的一半
,内切圆半径等于
面积的2倍与周长的商
面积的2倍与周长的商

查看答案和解析>>

科目:初中数学 来源:2011届河北省廊坊市安次区初三第一次模拟考试数学试题 题型:解答题

阅读材料:如图23—1,的周长为,面积为S,内切圆的半径为,探究与S、之间的关系.连结





解决问题

(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形存在内切圆(与各边都相切的圆),如图23—2且面积为,各边长分别为,试推导四边形的内切圆半径公式;
(3)若一个边形(为不小于3的整数)存在内切圆,且面积为,各边长分别为,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

同步练习册答案