【题目】如图,长方形ABCD是由六个正方形组成的完美长方形,中间最小正方形的面积是1,最大正方形的边长为x.
![]()
(1)用x的代数式表示长方形ABCD的长是______或______、宽是______;
(2)求长方形ABCD的面积.
【答案】(1)2x1,3x8;2x3;(2)143.
【解析】
(1)设最大正方形的边长为x,依次表示出其余正方形的边长;
(2)根据组成长方形的上下对边相等列式求值得到最大正方形的边长,进而得到长方形的边长,求面积即可.
(1)∵中间最小正方形的面积是1,
![]()
∴这个小正方形的边长为1,
∵最大正方形的边长为x,
∴AE=x1,
则:AD=x1+x=2x1,
∵AE=x1,
∴MB=x2,CN=x3,
∴BC=x2+x3+x3=3x8,AB=AM+MB=x1+x2=2x3;
故答案为:2x1,3x8;2x3;
(2)由题意得:2x1=3x8,
解得:x=7,
则AD=13,AB=11,
长方形ABCD的面积为:13×11=143,
答:长方形ABCD的面积为143.
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系,已知
的顶点
的坐标为
,顶点
的坐标为
,顶点
的坐标为
.
![]()
(1)求
的面积;
(2)若把
向上平移3个单位长度,再向左平移6个单位长度得到
,请画出
;
(3)若点
在
轴上,且
的面积与
的面积相等,请直接写出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板如图两种方法裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
![]()
现有38张硬纸板,裁剪时x张用A方法,其余用B方法。
(1)用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程
=k﹣2有解,且使关于x的一次函数y=(k+
)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是( )
A. ﹣1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展课类别,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
![]()
(1)此次共调查了多少人?
(2)请将条形统计图补充完整
(3)求文学类课程在扇形统计图中所占圆心角的度数;
(4)若该校有1500名学生,请估计喜欢体育类拓展课的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
(1)若AB=2,求四边形ABFG的面积;
(2)求证:BF=AE+FG.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在
中,
平分
(
),
为
上一点,且
于点
.
(1)当
,
时,求
的度数;
(2)若
,
,请结合(1)的计算猜想
、
、
之间的数量关系,直接写出答案,不说明理由;(用含有
、
的式子表示
)
(3)如图②,当点
在
的延长线上时,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
⑴求证:△ABF≌△ECF;⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明,如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.
![]()
证明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com