【题目】如图所示,
的直径
为
,弦
为
,
的平分线交
于E,且
.
![]()
(1)求
,
,
的长
(2)图中还有一条线段
的长是否能确定,若能求出
的长。
【答案】(1)
,
;(2)![]()
【解析】
(1)先根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,然后根据勾股定理求出具体值.
(2)过E作EF⊥AC于F,EG⊥BC于G,F,G是垂足,则四边形CFEG是正方形,设EF=EG=x,由三角形面积公式可求出x的值,及CE的值,根据△ADE∽△CBE,根据相似比可求出DE的长,进而求出CD的长.
(1)∵AB是直径
∴∠ACB=∠ADB=90°
在Rt△ABC中,AB2=AC2+BC2,AB=10cm,AC=6cm
∴BC2=AB2-AC2=102-62=64
∴BC=
=8(cm)
又∵CD平分∠ACB,
∴弧AD=弧BD,
∴AD=BD,
又∵在Rt△ABD中,AD2+BD2=AB2
∴AD2+BD2=102
∴AD=BD=
=5
(cm).
(2)过E作EF⊥AC于F,EG⊥BC于G,F,G是垂足,则四边形CFEG是正方形,
![]()
设EF=EG=x,
∴
ACx+
BCx=
ACBC
∴
×6x+
×8×x=
×6×8
∴x=
,
∴CE=
x=
,
∵∠DAB=∠DCB,
∵△ADE∽△CBE
∴DE:BE=AE:CE=AD:BC
∴DE:BE=AE:
=5
:8
∴AE=
,BE=ABAE=10
=![]()
∴DE=![]()
∴CD=CE+DE=
+
=7
(cm).
科目:初中数学 来源: 题型:
【题目】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量
箱与销售价
元/箱之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价
(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:
.“解密世园会”、
.“爱我家,爱园艺”、
.“园艺小清新之旅”和
.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
(1)李欣选择线路
.“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在Rt△ABC中,∠A=90°,
=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
(1)①求
的值;②求∠ACD的度数.
(2)拓展探究
如图 2,在Rt△ABC中,∠A=90°,
=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
(3)解决问题
如图 3,在△ABC中,∠B=45°,AB=4
,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA
![]()
(1)求抛物线解析式;
(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面有4个命题:①过任意三点可以画一个圆;②同圆的内接正方形和内接正三角形的边长比是
:
;③三角形的内心到三角形的三边距离相等;④长度相等的弧是等弧.其中正确的有_____(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数
的图象的对称轴是直线
,则下列理论:①
,
②
,③
,④
,⑤当
时,
随
的增大而减小,其中正确的是( ).
![]()
A. ①②③ B. ②③④ C. ③④⑤ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】速滑运动受到许多年轻人的喜爱。如图,四边形
是某速滑场馆建造的滑台,已知
,滑台的高
为
米,且坡面
的坡度为
.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为
.
(1)求新坡面
的坡角及
的长;
(2)原坡面底部
的正前方
米处
是护墙
,为保证安全,体育管理部门规定,坡面底部至少距护墙
米。请问新的设计方案能否通过,试说明理由(参考数据:
)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,菱形ABCD的顶点A、B在
轴上,点A在点B的左侧,点D在
轴的正半轴上,
,点A的坐标为
.
(1)求D点的坐标.
(2)求直线AC的函数关系式.
(3)动点P从点A出发,以每秒1个单位长度的速度,按照
的顺序在菱形的边上匀速运动一周,设运动时间为
秒.求
为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com