【题目】过反比例函数 y=
(k < 0)的图象上一点 A 作 x 轴的垂线交 x 轴于点 B ,O 为坐标原点, 且△ABO 的面积 S△ABO = 4 .
(1)求 k 的值;
(2)若二次函数 y = ax2 与反比例函数 y=
(k < 0)的图象交于点C(-2,m) ,请结合函数的图象写出满足 ax2<
的x的取值范围.
![]()
科目:初中数学 来源: 题型:
【题目】每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨) | 3 | 4 | 5 | 6 | 7 |
频数 | 1 | 2 | 5 | 4﹣x | x |
A. 平均数、中位数 B. 众数、中位数 C. 平均数、方差 D. 众数、方差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数
图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,直径
垂直于弦
,垂足为
,连结
,将
沿
翻转得到
,直线
与直线
相交于点
.
![]()
(1)求证:
是
的切线;
(2)若
为
的中点,
,求
的半径长;
(3)①求证:
;
②若
的面积为
,
,求
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种火爆的网红电子产品,每件产品成本
元、工厂将该产品进行网络批发,批发单价
(元)与一次性批发量
(件)(
为正整数)之间满足如图所示的函数关系.
直接写出
与
之间所满足的函数关系式,并写出自变量
的取值范围;
若一次性批发量不超过
件,当批发量为多少件时,工厂获利最大?最大利润是多少?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙
和⊙
相交于A、B两点,
与AB交于点C,
的延长线交⊙
于点D,点E为AD的中点,AE=AC,联结
.
(1)求证:
;
(2)如果
,
,求⊙
的半径长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线
与y轴交于点C(0,2),它的顶点为D(1,m),且
.
(1)求m的值及抛物线的表达式;
(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;
(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°.求P点的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场要建一个饲养场(长方形
,饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长60米,设饲养场(长方形
的宽为
米.
(1)求饲养场的长
(用含
的代数式表示).
(2)若饲养场的面积为
,求
的值.
(3)当
为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少
?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com