精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2
(1)求实数m的取值范围;
(2)是否存在m的值使得x1x2+x1+x2=0成立?若存在,求出m的值;若不存在,说明理由.
分析:(1)根据已知可知,方程有两个实数根,那么△≥0,解不等式即可;
(2)根据根与系数的关系x1+x2=1-2m,x1x2=m2,再利用x1x2+x1+x2=0成立求出m的值即可.
解答:解:(1)∵关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2
∴△=b2-4ac=(2m-1)2-4×1×m2=-4m+1≥0,
解得m≤
1
4


(2)不存在m的值,使得x1x2+x1+x2=0成立.理由如下:
∵x1、x2是一元二次方程x2+(2m-1)x+m2=0的两个实数根,
∴x1+x2=1-2m,x1x2=m2
∴x1x2+x1+x2=m2+1-2m
若x1x2+x1+x2=0成立,则m2+1-2m=0,
解上述方程得,m=1.
∵(1)中m≤
1
4
,(2)中m=1,
∴矛盾,
∴不存在m的值,使得x1x2+x1+x2=0成立.
点评:此题主要考查了一元二次方程根与系数的关系以及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案