【题目】如图,在
中,
,
,
平分
,
、
分别是
、
上的动点,当
最小时,
的度数为( )
![]()
A.
B.
C.
D.![]()
【答案】B
【解析】
在AC上截取AE=AN,先证明△AME≌△AMN(SAS),推出ME=MN.当B、M、E共线,BE⊥AC时,BM+ME最小,可求出∠NME的度数,从而求出∠BMN的度数.
如图,在AC上截取AE=AN,
![]()
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,
,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME,
当B、M、E共线,BE⊥AC时,BM+ME最小,
∴MN⊥AB
∵∠BAC=68°
∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,
∴∠BMN=180°-112°=68°.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,
,
,若点
从点
出发以
/
的速度向点
运动,点
从点
出发以
/
的速度向点
运动,设
、
分别从点
、
同时出发,运动的时间为
.
(1)求
、
的长(用含
的式子表示).
(2)当
为何值时,
是以
为底边的等腰三角形?
(3)当
为何值时,
//
?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰
中,
,
,
是
边上的中点,点
,
分别是边
,
上的动点,点
从顶点
沿
方向作匀速运动,点
从从顶点
沿
方向同时出发,且它们的运动速度相同,连接
,
.
![]()
(1)求证:
.
(2)判断线段
与
的位置及数量关系,并说明理由.
(3)在运动过程中,
与
的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数
,有下列说法:
①如果当x≤1时
随
的增大而减小,则m≥1;
②如果它的图象与x轴的两交点的距离是4,则
;
③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m=-1;
④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.
其中正确的说法是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C
![]()
(1)求抛物线的解析式;
(2)点P从点A出发,以每秒
个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.
①当t为何值时,矩形PQNM的面积最小?并求出最小面积;
②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且P(1,﹣3),B(4,0)
(1)点A的坐标是 ;
(2)求该抛物线的解析式;
(3)直接写出该抛物线的顶点C的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=
(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=![]()
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com