精英家教网 > 初中数学 > 题目详情
17.如图,已知在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=$\frac{3}{5}$,则BC=6.

分析 根据在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=$\frac{3}{5}$,可得AB的长,从而可得BC的长.

解答 解:∵在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=$\frac{3}{5}$,sinA=$\frac{BC}{AB}$,
∴AB=2CD=10,
∴BC=AB•sinA=10×$\frac{3}{5}$=6,
故答案为:6.

点评 本题考查解直角三角形和直角三角形斜边上的中线,解题的关键是明确题意,找出各边之间的关系和边与角之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.某市在一道路拓宽改造过程中,发现原来道路两边的路灯除照亮路面的圆的面积不能满足需求外,亮度效果足以满图拓宽后的设计标准,因此,经设计人员研究,只要将路灯的灯标增加一定高度,使其照亮路面圆的面积为原来的2倍即可.已知原来路灯灯高为7.5米,请你求出原灯杆至少再增加多少米,才能符合拓宽后的设计要求?(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知?ABCD中,∠ABC的平分线交AD于E,cos∠AEB=$\frac{2}{3}$,求∠C的度数(精确到1′).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.小明在研究由矩形纸片折叠等边三角形之后,经过探究,他用圆形纸片也折叠出了等边三角形,以下是他的折叠过程:第一步:将圆形纸片沿直径AM对折,然后打开;第二步:将纸片沿折痕BC翻折使点M落在圆心I处,然后打开,连接AB、AC.

(1)在图③中BC与IM的位置关系是互相垂直平分;
(2)小明折叠出的△ABC是等边三角形吗?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,点C是线段AB上一点,AC<AB,M,N分别是AB和CB的中点,AC=8,NB=5,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x(m),养鸡场的面积为y(m2
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;
(3)根据(1)中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图①,已知直线y=-$\frac{1}{2}$x+3分别交x轴,y轴于点A,点B.点P是射线AO上的一个动点.把线段PO绕点P逆时针旋转90°得到的对应线段为PO′,再延长PO′到C使CO′=PO′,连结AC,设点P坐标为(m,0),△APC的面积为S.
(1)直接写出OA和OB的长,OA的长是6,OB的长是3;
(2)当点P在线段OA上(不含端点)时,求S关于m的函数表达式;
(3)当以A,P,C为顶点的三角形和△AOB相似时,求出所有满足条件的m的值;
(4)如图②,当点P关于OC的对称点P′落在直线AB上时,m的值是-$\frac{30}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.多项式an-a3n+an+2分解因式的结果是(  )
A.an(1-a3+a2B.an(-a2n+a2C.an(1-a2n+a2D.an(-a3+an

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.资料表明,被称为“地球之肺”的森林正以每年1300万平方千米的速率从地球上消失,其中1300万用科学记数法表示为(  )
A.0.13×108B.1.3×108C.1.3×107D.13×107

查看答案和解析>>

同步练习册答案