精英家教网 > 初中数学 > 题目详情
如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=
1
2
,求cos∠ACB的值和线段PE的长.
(1)连接OB,
∵PB是⊙O的切线,
∴∠PBO=90°,
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB,
又∵PO=PO,
∴△PAO≌△PBO(SAS),
∴∠PAO=∠PBO=90°,
∴OA⊥PA,
∴直线PA为⊙O的切线.

(2)EF2=4OD•OP.
证明:∵∠PAO=∠PDA=90°
∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°,
∴∠OAD=∠OPA,
∴△OAD△OPA,
OD
OA
=
OA
OP
,即OA2=OD•OP,
又∵EF=2OA,
∴EF2=4OD•OP.

(3)∵OA=OC,AD=BD,BC=6,
∴OD=
1
2
BC=3(三角形中位线定理),
设AD=x,
∵tan∠F=
1
2

∴FD=2x,OA=OF=2x-3,
在Rt△AOD中,由勾股定理,得(2x-3)2=x2+32
解之得,x1=4,x2=0(不合题意,舍去),
∴AD=4,OA=2x-3=5,
∵AC是⊙O直径,
∴∠ABC=90°,
又∵AC=2OA=10,BC=6,
∴cos∠ACB=
6
10
=
3
5

∵OA2=OD•OP,
∴3(PE+5)=25,
∴PE=
10
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,以点A(3,0)为圆心的圆与x轴交于原点O和点B,直线l与x轴、y轴分别交于点C(-2,0)、D(0,3).
(1)求出直线l的解析式;
(2)若直线l绕点C顺时针旋转,设旋转后的直线与y轴交于点E(0,b),且0<b<3,在旋转的过程中,直线CE与⊙A有几种位置关系?试求出每种位置关系时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EFBC交AB的延长线于点E,交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
4
5
,CF=1,求⊙O的半径及EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠C=90°,AC=6,BC=8,点O在CB上,且AO平分∠BAC,CO=3(如图所示),以点O为圆心,r为半径画圆.
(1)r取何值时,⊙O与AB相切;
(2)r取何值时,⊙O与AB有两个公共点;
(3)当⊙O与AB相切时,设切点为D,在BC上是否存在点P,使△APD的面积为△ABC的面积的一半?若存在,求出CP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AFBE;
(2)△ACP△FCA;
(3)CP=AE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在半径为1的⊙O中,AB为直径,C为弧AB的中点,D为弧CB的三等分点,且弧DB的长等于弧CD长的两倍,连接AD并延长交⊙O的切线CE于点E(C为切点),则AE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CGAD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.
(1)试问:CG是⊙O的切线吗?说明理由;
(2)请证明:E是OB的中点;
(3)若AB=8,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在同心圆中,大圆的弦AB,CD分别与小圆相切于点E,F,则弦AB,CD的大小关系是(  )
A.AB>CDB.AB=CDC.AB<CDD.无法确定

查看答案和解析>>

同步练习册答案