精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在Rt△ABC中,∠C=90°,sinA=
35
,AB=10、点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,连接BD,
(1)求AC的长;
(2)当OA为多少时,BD与⊙O相切?并说明理由.
分析:(1)由角A的正弦值即能求得该角的余弦值,又有AB值从而得到AC值.
(2)按照其意思连接OD,DE求得OA.
解答:解:(1)BC=AB•sinA=10×
3
5
=6,(1分)
∴AC=
102-62
=8、(2分)

(2)OA=
35
16
(3分)精英家教网
理由:连接OD,DE、(4分)
如果BD与⊙O相切,则OD⊥BD,∴∠ADO+∠BDC=90°(5分)
∵OA=OD,∴∠A=∠ADO,∴∠A+∠BDC=90°
∵∠C=90°,∴∠BDC+∠DBC=90°,∴∠A=∠DBC
∵∠C=∠C,∴△ABC∽△BDC,(6分)
CB
AC
=
CD
BC
,解得CD=
9
2

∴AD=8-
9
2
=
7
2
(7分)
∵AE是⊙O的直径,∴∠ADE=90°=∠C(8分)
∵∠A=∠A,∴△ADE∽△ACB,∴
AD
AE
=
AC
AB
,解得AE=
35
8
(9分)
∴OA=
35
16
.(10分)
点评:本题是一个具有一定逻辑性的综合题,由∠A的正弦值求得余弦值,即得到AC值,连接OD,DE;由三角形相似,利用相似三角形的性质即可求得AD的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案