| A. | 6$\sqrt{3}$ | B. | 12$\sqrt{3}$ | C. | $\frac{9}{2}$$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
分析 由翻折的性质可知BC=OC=3,由点是矩形ABCD的中心可知AC=2BC=6,在Rt△ABC中由勾股定理求得AB=3$\sqrt{3}$,最后依据矩形的面积公式求解即可.
解答 解:由翻折的性质可知:BC=OC=3,
∵点O是矩形ABCD的中心,
∴AC=2OC=2×3=6.
Rt△ABC中由勾股定理得AB=$\sqrt{A{C}^{2}-C{B}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$.
矩形ABCD的面积=AB•BC=3$\sqrt{3}$×3=9$\sqrt{3}$.
故选:D.
点评 本题主要考查的是翻折的性质、矩形的性质、勾股定理的应用,依据翻折的性质和矩形的性质求得AC的长是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2种 | B. | 3种 | C. | 4种 | D. | 5种 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com