精英家教网 > 初中数学 > 题目详情

如图,设P是等边三角形ABC内的一点,PA=1,PB=2,PC=数学公式,将△ABP绕点A按逆时针方向旋转,使AB与AC重合,点P旋转到P?外,则sin∠PCP′的值是________(不取近似值).


分析:根据题意,旋转角度为60°.易证明△APP′是等边三角形,PP′=1;
由CP′=BP=2,PC=可证明△PCP′是直角三角形,且∠PP′C=90°.
根据三角函数的定义求解.
解答:∵△ABC为等边三角形,∴∠BAC=60°.
根据旋转的性质,有
∠PAP′=60°,AP′=AP=1,CP′=BP=2.
∴△APP′是等边三角形,PP′=1.
在△PCP′中,
PC=,PP′=1,CP′=2.
∴PC2=P′P2+P′C2
∴△PCP′是直角三角形,且∠PP′C=90°.
∴sin∠PCP′=
点评:此题考查了旋转的性质及直角三角形的判定和三角函数等知识点,有一定的综合性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•莱芜)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆,△EMN是随MN滑动而变化的三角通风窗(阴影部分均不通风).
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积.
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数.
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年山东省莱芜市中考数学试卷(解析版) 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆,△EMN是随MN滑动而变化的三角通风窗(阴影部分均不通风).
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积.
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数.
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(24):2.8 二次函数的应用(解析版) 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

同步练习册答案