精英家教网 > 初中数学 > 题目详情
当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线(    ),其中一条直线叫做另一条直线的(    )线,它们的交点叫做(    ) .
互相垂直;垂;垂足.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•成华区一模)已知两直线l1、l2分别经过点A(3,0),点B(-1,0),并且当两条直线同时相交于y轴负半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的
32
倍?若存在,求出点P的坐标;若不存在,请说明理由.
(3)将直线l1按顺时针方向绕点C旋转α°(0<α<90),与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时的α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为M
M(l)
M′(l)
,点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换M
M(l)
M′(l)
,得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换M′(l)
M(m)
Mn(l,m)
,这样点M就与该点关于直线l和m的轴对称点M′′(l,m)之间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,记为M′(l)
M(m)
Mn(l,m)
,M的对应点就记为M′′(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在图(2)中,求作M′(l)和M′′(l,m).(要求保留作图痕迹)
(2)当θ=
 
°时,M与M′′(l,m)关于点O成中心对称.
(A)30(B)45(C)60(D)90
(3)(在以下两题中任选一题作答)
①试探讨∠MOM′′(l,m)与θ之间的数量关系,并证明你的结论.
②试探讨OM与OM′′(l,m)间的数量关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2008年江苏省南京市建邺区中考数学一模试卷(解析版) 题型:解答题

平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为,点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换,得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换,这样点M就与该点关于直线l和m的轴对称点M′′(l,m)之间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,记为,M的对应点就记为M′′(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在图(2)中,求作M′(l)和M′′(l,m).(要求保留作图痕迹)
(2)当θ=______°时,M与M′′(l,m)关于点O成中心对称.
(A)30(B)45(C)60(D)90
(3)(在以下两题中任选一题作答)
①试探讨∠MOM′′(l,m)与θ之间的数量关系,并证明你的结论.
②试探讨OM与OM′′(l,m)间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省南京市中考数学模拟卷(解析版) 题型:解答题

(2008•建邺区一模)平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为,点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换,得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换,这样点M就与该点关于直线l和m的轴对称点M′′(l,m)之间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,记为,M的对应点就记为M′′(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在图(2)中,求作M′(l)和M′′(l,m).(要求保留作图痕迹)
(2)当θ=______°时,M与M′′(l,m)关于点O成中心对称.
(A)30(B)45(C)60(D)90
(3)(在以下两题中任选一题作答)
①试探讨∠MOM′′(l,m)与θ之间的数量关系,并证明你的结论.
②试探讨OM与OM′′(l,m)间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案