精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y1=ax2+bx+c的顶点坐标为(2,1),且经过点B(
5
2
3
4
),抛物线对称轴左侧与x轴交于点A,与y轴相交于点C.
(1)求抛物线解析式y1和直线BC的解析式y2
(2)连接AB、AC,求△ABC的面积.
(3)根据图象直接写出y1<y2时自变量x的取值范围.
分析:(1)设抛物线顶点式解析式y1=a(x-2)2+1,然后把点B的坐标代入求出a的值,即可求出抛物线解析式;令x=0求出点C的坐标,再设直线BC的解析式y2=kx+b(k≠0),利用待定系数法求一次函数解析式解答;
(2)令y=0,利用抛物线解析式求出点A的坐标,设直线BC与x轴的交点为D,利用直线BC的解析式求出点D的坐标,然后根据S△ABC=S△ABD+S△ACD,列式进行计算即可得解;
(3)根据图形,找出直线BC在抛物线上方部分的x的取值范围即可.
解答:解:(1)∵抛物线的顶点坐标为(2,1),
∴y1=a(x-2)2+1,
∵抛物线经过点(
5
2
3
4
),
∴a(
5
2
-2)2+1=
3
4

解得a=-1,
∴y1=-(x-2)2+1=-x2+4x-3,
当x=0,y=-3,
∴C(0,-3),
设直线BC解析式为y2=kx+b(k≠0),
则有
b=-3
5
2
k+b=
3
4

解得
k=
3
2
b=-3

所以,直线BC的解析式为y2=
3
2
x-3;

(2)对于y1=-x2+4x-3,当y=0时,-x2+4x-3=0,
即x2-4x+3=0,
解得x1=1,x2=3,
∴点A的坐标为(1,0),
设直线BC与x轴相交于D,
对于y2=
3
2
x-3,当y=0时,
3
2
x-3=0,
解得x=2,
∴点D的坐标为(2,0),
∴AD=2-1=1,
则S△ABC=S△ABD+S△ACD
=
1
2
AD•|yB|+
1
2
AD•|yC|=
1
2
×1×
3
4
+
1
2
×1×3=
15
8


(3)由图得,当x<0或x>
5
2
时,y1<y2
点评:本题是二次函数综合题型,主要考查了待定系数法求函数解析式(包括二次函数解析式、直线解析式),三角形的面积求解,利用函数图象解不等式,(1)利用顶点式解析式求解更加简便,(2)把△ABC分解成两个三角形求面积是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图:已知抛物线y1=-x2-2x+8的图象交x轴于点A,B两点,与y轴的正半轴交于点C.抛物线y2经过B、C两点且对称轴为直线x=3.
(1)确定A、B、C三点的坐标;
(2)求抛物线y2的解析式;
(3)若过点(0,3)且平行于x轴的直线与抛物线y2交于M、N两点,以MN为一边,抛物线y2上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•义乌市)如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2;  ②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在; ④使得M=1的x值是-
1
2
2
2

其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.那么使得M=1的x值为
-
1
2
2
2
-
1
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•岱山县模拟)如图,已知抛物线y1=ax2+bx+c与抛物线y2=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于A、B两点.
 
(1)求抛物线y1的解析式;
(2)若AB的中点为C,求sin∠CMB;
(3)若一次函数y=kx+h的图象过点M,且与抛物线y1交于另一点N(m,n),其中m≠n,同时满足m2-m+t=0和n2-n+t=0(t为常数).
①求k值;
②设该直线交x轴于点D,P为坐标平面内一点,若以O、D、P、M为顶点的四边形是平行四边形,试求P点的坐标.(只需直接写出点P的坐标,不要求解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y1=-3x2+3,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:
①当x>0时,y1>y2;②使得M大于3的x值不存在;③当x<0时,x值越大,M值越小; ④使得M=1的x值是-
2
3
6
3

其中正确的是(  )

查看答案和解析>>

同步练习册答案