
(1)解:OE=OF.理由如下:
∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)解:当∠ACB=90°,点O在AC的中点时,
∵OE=OF,
∴四边形AECF是正方形;

(3)解:不可能.
如图所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=

∠ACB+

∠ACD=

(∠ACB+∠ACD)=90°,
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
分析:(1)探究问题,也就是证明问题,可以先假设,题中OE,OF可通过平行线,角平分线确定二者之间的关系.
(2)正方形的判定问题,AECF若是正方形,则必有对角线OA=OC,所以O为AC的中点,同样在△ABC中,当∠ACB=90°时,可满足其为正方形.
(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直.
点评:熟练掌握菱形及正方形的性质及判定定理,能够解决一些简单的运动问题.