精英家教网 > 初中数学 > 题目详情
如图所示,在平面直角坐标系中,以点M(2,3)为圆心,5为半径的圆交x轴于A,B两点,过点M作x轴的垂线,垂足为D;过点B作⊙M的切线,与直线MD交于N点.
(1)求点B、点N的坐标以及直线BN的解析式;
(2)求过A、N、B、三点(对称轴与y轴平行)的抛物线的解析式;
(3)设(2)中的抛物线与y轴交于点P,以点D,B,P三点为顶点作平行四边形,请你求出第四个顶点Q的坐标,并判断Q是否在(2)中的抛物线上.

【答案】分析:(1)本题需先根据圆的方程求出点B的坐标,然后求出直线BN的解析式,即可求出点N的坐标.
(2)根据抛物线的对称轴和点A的坐标即可求出抛物线的解析式.
(3)根据抛物线的解析式求出点P的坐标,再根据平行线的性质求出点Q的坐标,并由此判断出Q是否在抛物线上.
解答:解:(1)连接BM
则BM=5,DM=3
BD===4
∴BO=BD-OD=4-2=2
∴点B坐标为(-2,0),
∵直线BN和BM垂直,
∴△MBD∽△MNB,




∴点N的坐标是(2,-),
设直线BN的解析式是y=kx+b(k≠0),
把B(-2,0)N(2,-)代入函数的解析式得:

解得k=-,b=-
∴直线BN的解析式是;y=-x-

(2)点A,B关于直线x=2对称,
所以x=2就是抛物线的对称轴那么设抛物线的方程为y=a(x-2)2-
将A(6,0)代入 0=16a-
a=
那么y=(x-2)2-=x2-x-4;

(3)令x=0,y=-4,
所以点P的坐标(0,-4)若构成平行四边形,那么Q的纵坐标为-4,
设横坐标为a,
∵AD=4,
∴a=4 点Q坐标(4,-4)将x=4代入y=--4=-4,
Q1(-4,-4);Q2(4,-4);Q3(0,4),
Q2在抛物线上是Q的横坐标,所以点Q在抛物线上.
点评:本题主要考查了抛物线的性质和解析式求法,要会根据已知条件求点的坐标并判断出是否在抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=
9x
的图象在第一象限相精英家教网交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A,B,C作循环对称跳动,即第一次从点P跳到关于点A的对称点M处,第二次从点M跳到关于点B的对称点N处,第三次从点N跳到关于点C的对称点处,…如此下去.
(1)在图中标出点M,N的位置,并分别写出点M,N的坐标:
 

(2)请你依次连接M、N和第三次跳后的点,组成一个封闭的图形,并计算这个图形的面积;
(3)猜想一下,经过第2009次跳动之后,棋子将落到什么位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系xoy中,有一组对角线长分别为1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其对角线OB1、B1B2、B2 B3依次放置在y轴上(相邻顶点重合),依上述排列方式,对角线长为n的第n个正方形的顶点An的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

同步练习册答案