精英家教网 > 初中数学 > 题目详情
(2013•威海)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为
(2,-1)
(2,-1)
分析:(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).所以1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理易求b、c的值;
(2)如图,连接AC、BC,BC交对称轴于点P,连接PA.根据抛物线的对称性质得到PA=PB,则△APC的周长的最小值=AC+AP+PC=AC+BC,所以根据两点间的距离公式来求该三角形的周长的最小值即可;
(3)如图2,点D是抛物线的顶点,所以根据抛物线解析式利用顶点坐标公式即可求得点D的坐标.
解答:解:(1)如图,∵AB=2,对称轴为直线x=2.
∴点A的坐标是(1,0),点B的坐标是(3,0).
∵抛物线y=x2+bx+c与x轴交于点A,B,
∴1、3是关于x的一元二次方程x2+bx+c=0的两根.
由韦达定理,得
1+3=-b,1×3=c,
∴b=-4,c=3,
∴抛物线的函数表达式为y=x2-4x+3;

(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.
由(1)知抛物线的函数表达式为y=x2-4x+3,A(1,0),B(3,0),
∴C(0,3),
∴BC=
32+32
=3
2
,AC=
32+12
=
10

∵点A、B关于对称轴x=2对称,
∴PA=PB,
∴PA+PC=PB+PC.
此时,PB+PC=BC.
∴点P在对称轴上运动时,(PA+PC)的最小值等于BC.
∴△APC的周长的最小值=AC+AP+PC=AC+BC=3
2
+
10


(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D是抛物线y=x2-4x+3的顶点坐标,即(2,-1).
故答案是:(2,-1).
点评:本题考查了二次函数综合题.解题过程中用到的知识点有:待定系数法求二次函数的解析式,轴对称--两点间距离最短,菱形的性质.解(1)题时,也可以把点A、B的坐标代入抛物线解析式,列出关于系数b、c的方程组,通过解方程组来求它们的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)如图,在平面直角坐标系中,直线y=
1
2
x+
3
2
与直线y=x交于点A,点B在直线y=
1
2
x+
3
2
上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.
(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.

查看答案和解析>>

同步练习册答案