.(14分) 已知:
是方程
的两个实数根,且
,抛物线
的图像经过点A(
)、B(
).
(1) 求这个抛物线的解析式;(3分)
(2) 设(1)中抛物线与
轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(5分)
(3) P是线段OC上的一点,过点P作PH⊥
轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.(6分)
科目:初中数学 来源: 题型:
(本小题满分14分)
已知:如图,抛物线
与y轴交于点C(0,
), 与x轴交于点A、 B,点A的坐标为(2,0).
![]()
(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线
与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(
,0).问:是否存在这样的直线
,使得△OMF是等腰三角形?若存 在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+m(m为常数)
经过点(0,4).
(1) 求m的值;
(2) 将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.
① 试求平移后的抛物线的解析式;
② 试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,
), 与x轴交于点A、 B,点A的坐标为(2,0).
![]()
(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(
,0).问:是否存在这样的直线
,使得△OMF是等腰三角形?若存 在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com