精英家教网 > 初中数学 > 题目详情
运用从“特殊到一般”,再从“一般到特殊”的思想解方程x2n=1(n为正整数),并且根据你发现的规律解方程x64=1.
当n=1时,x2=1,所以x=±1;
当n=2时,x4=1,所以(x22=1;
∴x2=±1,
又∵x2≥0,
∴取x2=1,得x=±1,
而2n在n取正整数时恒为偶数,由此归纳出方程x2n=1,在实属范围内只有两个解,
即x=±1,
所以x64=1的解为x=±1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•阜宁县一模)在数学学习和研究中经常需要总结运用数学思想方法.如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整.
题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若
AF
EF
=3
,求
CD
CG
的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则易求
AB
EH
的值是
3
3
CG
EH
的值是
2
2
,从而确定
CD
CG
的值是
3
2
3
2

(2)类比延伸
如图2,在原题的条件下,若
AF
EF
=m
(m>0),则
CD
CG
的值是
m
2
m
2
.(用含m的代数式表示),写出解答过程.
(3)拓展迁移
如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若
AB
CD
=a
BC
BE
=b
(a>0,b>0),则
AF
EF
的值是
ab
ab
.(用含a、b的代数式表示)写出解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

运用从“特殊到一般”,再从“一般到特殊”的思想解方程x2n=1(n为正整数),并且根据你发现的规律解方程x64=1.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省阜宁县九年级第一次调研数学试卷(解析版) 题型:解答题

在数学学习和研究中经常需要总结运用数学思想方法。如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整。

题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求的值。

(1)尝试探究

在图1中,过点E作EH∥AB交BG于点H,则易求的值是       的值是

         ,从而确定的值是          

(2)类比延伸

如图2,在原题的条件下,若,则的值是         。(用含m的代数式表示),写出解答过程。

(3)拓展迁移

如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若a>0,b>0),则的值是         。(用含ab的代数式表示)写出解答过程。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

运用从“特殊到一般”,再从“一般到特殊”的思想解方程x2n=1(n为正整数),并且根据你发现的规律解方程x64=1.

查看答案和解析>>

同步练习册答案