精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,OA、OB是半径,且OA⊥OB,OA=6,点C是AB上异于A、B的动点。过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE。

(1)求证:四边形OGCH为平行四边形;

(2)①当点C在AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;若不存在,请说明理由;

②求CD2+CH2之值。

 


(1)证明:如右图,∵CD⊥OA,CE⊥OB,

     ∴∠ODC=∠OEC=90°

     又∵∠AOB=90°,∴四边形OECD是矩形。……(1分)

     ∴OD=EC,且OD//EC,∴∠ODG=∠CEH

     ∵DG=EH,∴△ODG≌△CEH,

     ∴OG=CH。

     同理可证OH=CG

     ∴四边形OGCH为平行四边形……………………(3分)

   (2)①解:线段DG的长度不变。…………………………………………………(4分)

∵点C是AB上的点,OA=6。∴OC=OA=6

∵四边形OECD是矩形,∴ED=OC=6………………………………………………(5分)

∵DG=GH=HE,∴DG=ED=2………………………………………………………(6分)

②解:如右图,过点H作HF⊥CD于点F,

   ∵EC⊥CD,∴HF//EC

   ∴△DHF∽△DEC, ∴,∴……………………(7分)

   从而CF=CD-FD=CD

   在Rt△CHF中,CH2=HF2+CF2=HF2+CD2

   在Rt△HFD中,HF2=DH2-DF2=CD2………………(9分)

   ∴CH2=CD2+CD2=16-CD2

   ∴……………………………………(11分)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是(  )
A、弦AB的长等于圆内接正六边形的边长
B、弦AC的长等于圆内接正十二边形的边长
C、
AC
=
BC
D、∠BAC=30°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△OAB中,OA=OB=2,∠OAE=30°,⊙O切AB于E,且分别交OA、OB于C、D,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,在⊙O中,OA∥BC,∠B=40°,则∠OAC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,OA=AB,OC⊥AB,则下列结论正确的是(  )
①弦AB的长等于圆内接正六边形的边长;
②弦AC的长等于圆内接正十二边形的边长;
③弧AC=弧BC;
④∠BAC=30°.
A、①②④B、①③④C、②③④D、①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•上海模拟)已知:如图,在△OAP中,OA=6,sin∠POA=
3
5
,cot∠PAO=
2
3
,二次函数的图象经过O、A、P三点.
(1)求点P的坐标;
(2)求二次函数的解析式;
(3)在x轴的下方,且在二次函数图象的对称轴上求一点M,使得△MOP与△AOP的面积相等.

查看答案和解析>>

同步练习册答案