精英家教网 > 初中数学 > 题目详情
26、(1)如图(1),在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.
求证:①AC=BD;②∠APB=60°.
(2)如图(2),在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,试探究:
①AC与BD的数量关系,并证明你的结论;②∠APB与α的大小关系,并证明你的结论.
分析:(1)先证明△AOC≌△BOD(SAS)由此可以得到AC=BD,再通过角之间的转化,即可求解∠APB的大小;
(2)证法同(1),只是把已知数用字母代替,解题方法没有改变.
解答:证明:(1)OA=OB,OC=OD,∠AOB=∠COD=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
∴△AOC≌△BOD(SAS)由此可以得到AC=BD,∠OAC=∠OBD,
∵∠BPC=∠PAB+∠ABO+∠OBD,
=∠PAB+∠ABO+∠OAC,
=∠OAB+∠ABO,
=120°,
∴∠APB=60°;

(2)①AC=BD.
证明:OA=OB,OC=OD,∠AOB=∠COD=α,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
∴△AOC≌△BOD(SAS),
即AC=BD.
②∠APB=α.
证明:由△AOC≌△BOD可以得到∠OAC=∠OBD,
利用“三角形的外角等于和它不相邻的两个外角的和”可以证明
即∠BPC=∠OBD+∠BOC+∠OCA,
=∠OAC+∠BOC+∠OCA,
=180°-α,
又∵∠APB=180°-∠BPC,
∴∠APB=α.
点评:本题主要考查了全等三角形的判定及性质问题以及角之间的转化问题,能够熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知:在Rt△ABC中,∠C=90°,E为AB的中点,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F两点在BC上,BE=CF,AB∥DE,AF∥CD
(1)求证:△ABF≌△DEC;
(2)已知中的图是否为轴对称图形?
答:
(填:“是”或“否”)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:在△ABC中,∠A=90°,AB=AC=6,P是AB上不与A、B重合的一动点,PQ⊥BC于Q,QR⊥AC于R.
(1)求证:PQ=BQ;
(2)设BP的长为x,QR的长为y,求y与x之间的函数关系式,并写出函数的定义域;
(3)PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一艘轮船在A处看见巡逻艇M在其北偏东64°的方向上,此时一艘客船在B处看见巡逻艇M在其北偏东13°的方向上,则此时从巡逻艇上看这两艘船的视角∠AMB=
51°
51°

查看答案和解析>>

同步练习册答案