精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,对角线长度分别为6和8,P为直线AB、CD之间的任一点,分别连接PA、PB、PC、PD,则△PAB和△PCD的面积之和为


  1. A.
    10
  2. B.
    12
  3. C.
    14
  4. D.
    48
B
分析:根据菱形的面积等于对角线乘积的一半求出菱形的面积,再根据三角形的面积公式求出△PAB和△PCD的面积之和等于菱形的面积的一半,然后计算即可得解.
解答:∵菱形ABCD的对角线分别6和8,
∴菱形的面积=×6×8=24,
∵点P到AB、CD的距离之和等于菱形AB边上的高,
∴△PAB和△PCD的面积之和=S菱形ABCD=×24=12.
故选B.
点评:本题考查了菱形的性质,三角形的面积,主要利用了菱形的面积的求解方法,判断出两个三角形的面积等于菱形的面积的一半是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案