【题目】在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;
(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PE⊥CD于点E,QF⊥CD于点F.问两动点运动多长时间时△OPE与△OQF全等?
![]()
【答案】(1)AC∥BD,AC=BD﹣10;(2)当两动点运动时间为2、
、12秒时,△OPE与△OQF全等.
【解析】
(1)①根据全等三角形的判定定理ASA证得结论;
②利用①中全等三角形的性质得到:AC∥BD,AC=BD-10;
(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.
(1)①如图,
![]()
∵∠DBO=∠ABO,OB⊥AE,
∴∠BAO=∠BEO,
∴AB=BE,
∴AO=OE,
∵∠CAy=∠BAO,
∴∠CAy=∠BEO,
∴∠DEO=∠CAO
在△ACO与△EDO中,
,
∴△ACO≌△EDO(ASA);
②由①知,△ACO≌△EDO,
∴∠C=∠D,AC=DE,
∴AC∥BD,AC=BD﹣10;
(2)设运动的时间为t秒,
(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),
(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=
(秒),
(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;
当点Q提前停止时,有t﹣6=6,解得t=12(秒),
综上所述:当两动点运动时间为2、
、12秒时,△OPE与△OQF全等.
科目:初中数学 来源: 题型:
【题目】某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表:
组别 | 观点 | 频数(人数) |
A | 大气气压低,空气不流动 | 80 |
B | 地面灰尘大,空气湿度低 | m |
C | 汽车尾气排放 | n |
D | 工厂造成的污染 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:![]()
(1)填空:m= , n= .
(2)若该市人口约有100万人,请你计算其中持D组“观点”的市民人数是多少万人?
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为( )![]()
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).
(1)如图1,若∠COF=28°,则∠BOE=______°;若∠COF=
则∠BOE=_______;∠BOE与∠COF的数量关系为_________;
(2)将∠COE绕点O逆时针旋转到如图2所示的位置时,(1)中∠BOE和∠COF的数量关系否仍然成立?若成立,请说明理由?若不成立,求出∠BOE与∠COF的数量关系;
(3)当∠COE绕点O顺时针旋转到如图3的位置时,(1)中∠BOE和∠COF的数量关系是否仍然成立?若成立,请说明理由;若不成立,请求出∠BOE与∠COF的数量关系.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.两数和的完全平方公式 |
D.两数差的完全平方公式 |
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,![]()
(1)以点A为圆心,AB长为半径画弧交AD于点F,再分别以B、F为圆心,大于
BF长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF;
(2)四边形ABEF是(选填矩形、菱形、正方形、无法确定),说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D,E,F在边BC上,点P在线段AD上,若PE∥AB,∠PFD=∠C,点D到AB和AC的距离相等.求证:点D到PE和PF的距离相等.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是
![]()
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com