精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=
1
2
x2-x+2.
(1)确定此抛物线的对称轴方程和顶点坐标;
(2)如图,若直线l:y=kx(k>0)分别与抛物线交于两个不同的点A、B,与直线y=-x+4相交于点P,试证
OP
OA
+
OP
OB
=2;
(3)在(2)中,是否存在k值,使A、B两点的纵坐标之和等于4?如果存在,求出k值;如果不存在,请说明理由.
分析:(1)将抛物线的解析式化为顶点式,即可得出抛物线的对称轴方程和顶点坐标.
(2)可通过构建相似三角形将
OP
OA
OP
OB
进行适当转换,分别过A、P、B作x轴的垂线,设垂足为A′、P′、B′;那么
OP
OA
OP
OB
就可转换成P、A的横坐标比以及P、B的横坐标比.由于A、B、P均为函数的交点,因此可联立相关函数,根据韦达定理进行求解.
(3)可根据直线y=kx的解析式,用A、B的横坐标表示出各自的纵坐标,然后根据韦达定理和两点的纵坐标和为4求出k的值,由于两函数有两个不同的交点,因此两函数联立的方程△>0,可得出一个k的取值范围,然后根据这个范围判定k的值是否符合要求即可.
解答:(1)解:抛物线y=
1
2
x2-x+2=
1
2
(x-1)2+
3
2

所以抛物线的对称轴为x=1,顶点坐标为(1,
3
2


(2)证明:由
y=
1
2
x2-x+2
y=kx

得x2-2(k+1)x+4=0.
设A(x1,y1)、B(x2,y2),则
x1+x2=2(k+1),x1x2=4;
y=kx
y=-x+4

得x=
4
k+1
(k>0).
即P点的横坐标xP=
4
k+1

作AA′⊥x轴于A′,PP′⊥x轴于P′,BB′⊥x轴于B′,于是:
OP
OA
+
OP
OB
=
OP′
OA′
+
OP′
OB′
=
xp
x1
+
xp
x2
=
xp(x1+x2)
x1x2
=
4
k+1
2(k+1)
4
=2.精英家教网

(3)解:不存在.
因为A(x1,y1)、B(x2、y2)在直线y=kx上,由题意,得
y1+y2=kx1+kx2=k(x1+x2)=k•2(k+1)=4;
所以k2+k-2=0.
解得k=1,k=-2(舍去)
当k=1时,方程x2-2(k+1)x+4=0可化为x2-4x+4=0有两个相等的实数根,不同题意舍去
故适合条件的k值不存在.
点评:本题主要考查了函数与一元二次方程的关系、一元二次方程根与系数的关系、函数图象交点等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线y=-
12
x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的 函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三精英家教网角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=ax2+c与x轴交于A、B两点,与y轴交于C点,直线y=
12
x-2经过点B及OC中点E.求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=-
1
2
x+1
分别交y轴、x轴于A,B两点,以线段AB为边向上作正方形ABCD过点A,D,C的抛物线y=ax2+bx+1与直线的另一交点为点E
(1)点C的坐标为
 
;点D的坐标为
 
.并求出抛物线的解析式;
(2)若正方形以每秒
5
个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=-
12
x+1
交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:022

已知抛物线+12x-19的顶点的横坐标是3,则a=________.

查看答案和解析>>

同步练习册答案