精英家教网 > 初中数学 > 题目详情
中,三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示.这样不需求的高,而借用网格就能计算出它的面积.
(1)请你将的面积直接填写在横线上.__________________
思维拓展:
(2)我们把上述求面积的方法叫做构图法.若三边的长分别为),请利用图的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.
探索创新:
(3)若三边的长分别为,且),试运用构图法求出这三角形的面积.
(1) 
(2)解:△ABC如图所示(位置不唯一)
  
 
(3)解:构造△ABC如图(3)所示: 
 
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,AC,BC的长分别是方程x2-7x+12=0的两个根,△ABC内一点P到三边的距离都相等.则PC为(  )
A、1
B、
2
C、
3
2
2
D、2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

1、填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出
21
条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形
7
个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有
5
个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是
14

(5)平面上10条直线最多能把平面分成
56
个部分.
(6)平面上10个圆最多能把平面分成
92
个区域.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,点D、E分别是AB、AC上的点,以AE为直径的⊙O与过B点的⊙P精英家教网外切于点D,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两根,且25BC•sinA=9AB,
(1)求△ABC三边的长;
(2)求证:BC是⊙P的切线;
(3)若⊙O的半径为3,求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:013

在直角三角形ABC,C=90°,A=30°,斜边上的高he=1,则三边的长分别是

[    ]

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

在直角三角形ABC中,C=90°A=30°,斜边上的高h=1,则三边的长分别是(    )  

   

 

查看答案和解析>>

同步练习册答案