精英家教网 > 初中数学 > 题目详情
11.已知关于x的方程(k2-1)x2+(2k+1)x+1=0.
(1)若方程有实数根,求k的取值范围;
(2)若方程有两个互为相反数的实数根,求k的值,并求此时方程的根.

分析 (1)分k2-1=0和k2-1≠0考虑,当k2-1=0时求出k值,将其代入原方程解之即可得出方程有解;当k2-1≠0时,根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上即可得出结论;
(2)设方程的两根为x1、x2,根据根的判别式结合x1、x2互为相反数即可得出关于k的分式方程,解之即可得出k的值,将k值代入原方程后解之即可得出结论.

解答 解:(1)①当k2-1=0时,k=±1,
当k=1时,原方程为3x+1=0,解得:x=-$\frac{1}{3}$;
当k=-1时,原方程为-x+1=0,解得:x=1;
②当k2-1≠0,即k≠±1时,△=(2k+1)2-4(k2-1)=4k+5≥0,
解得:k≥-$\frac{5}{4}$,
∴k≥-$\frac{5}{4}$且k≠±1.
综上所述,k≥-$\frac{5}{4}$时,方程有实数根.
(2)设方程的两根为x1、x2
∵方程有两个互为相反数的实数根,
∴x1+x2=-$\frac{2k+1}{{k}^{2}-1}$=0,
解得:k=-$\frac{1}{2}$,
经检验可得出k=-$\frac{1}{2}$是分式方程-$\frac{2k+1}{{k}^{2}-1}$=0的解.
当k=-$\frac{1}{2}$时,原方程为-$\frac{3}{4}$x2+1=0,
解得:x1=$\frac{2\sqrt{3}}{3}$,x2=-$\frac{2\sqrt{3}}{3}$.
∴当k=-$\frac{1}{2}$时,方程有两个互为相反数的实数根,此时方程的根为x=±$\frac{2\sqrt{3}}{3}$.

点评 本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系得出方程及不等式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,在⊙O中,直径AB=4,点C在⊙O上,且∠AOC=60°,连接BC,点P在BC上(点P不与点B,C重合),连接OP并延长交⊙O于点M,过P作PQ⊥OM交$\widehat{AM}$于点Q.
(1)求BC的长;
(2)当PQ∥AB时,求PQ的长;
(3)点P在BC上移动,当PQ的长取最大值时,试判断四边形OBMC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.对于一个圆和一个正方形给出如下定义:若圆上存在到此正方形四条边距离都相等的点,则称这个圆是该正方形的“等距圆”.
如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.

(1)当r=2$\sqrt{2}$时,在P1(0,2),P2(-2,4),P3(4$\sqrt{2}$,2),P4(0,2-2$\sqrt{2}$)中可以成为正方形ABCD的“等距圆”的圆心的是P2(-2,4)或P4(0,2-2$\sqrt{2}$);
(2)若点P坐标为(-3,6),则当⊙P的半径r=5时,⊙P是正方形ABCD的“等距圆”.试判断此时⊙P与直线AC的位置关系?并说明理由.
(3)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P的圆心P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)用配方法解一元二次方程:x2-6x+4=0.
(2)已知关于x的一元二次方程x2-4x+m=0的根的判别式的值为4,求m值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)($\frac{2}{3}$-$\frac{3}{4}$+$\frac{1}{6}$)÷(-$\frac{1}{24}$)(用简便方法);
(2)-23-(-1-$\frac{1}{2}$)÷3×[3-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?
(1)太阳从西边落山;
(2)a2+b2=-1(其中a、b都是实数);
(3)水往低处流;
(4)三个人性别各不相同;
(5)一元二次方程x2+2x+3=0无实数解;
(6)经过有信号灯的十字路口,遇见红灯.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在准备“综合与实践”活动课时,小明关注了佛山移动公司手机资费两种套餐:
A套餐:月租0元,市话通话费每分钟0.49元;
B套餐:月租费48元,免费市话通话时间48分钟,超出部分每分钟0.25元.
设A套餐每月市话话费为y 1(元),B套餐每月市话话费为y2(元),月市话通话时间为x分钟.(x>48)
(1)分别写出y1、y2与x的函数关系式.
(2)月市话通话时间为多长时,两种套餐收费一样?
(3)小明爸爸每月市话通话时间为200分钟,请说明选择哪种套餐更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.某足球赛一个赛季共进行了26轮比赛(即每队均需26场),其中胜一场得3分,平一场得1分,负一场得0分,某队在这个赛季中平局的场数比负的场数多7场,结果共得34分,则这个队在第一赛季中胜、平、负的场数依次是7、13、6.

查看答案和解析>>

同步练习册答案